• Title/Summary/Keyword: Dosimetric study

Search Result 203, Processing Time 0.025 seconds

Dosimetric effects of couch attenuation and air gaps on prone breast radiation therapy (Prone Breast Phantom을 이용한 couch 산란영향 평가)

  • Kim, Min Seok;Jeon, Soo Dong;Bae, Sun Myeong;Baek, Geum Mun;Song, Heung Gwon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • Purpose: The purpose of this study is to evaluate the dosimetric effects of couch attenuation and air gaps using 3D phantom for prone breast radiation therapy. Materials and method: A 3D printer(Builder Extreme 1000) and computed tomography (CT) images of a breast cancer patient were used to manufacture the customized breast phantom. Eclipse External Beam Planning 13.6 (Varian Medical Systems Palo Alto, CA, USA) was used to create the treatment plan with a dose of 200 cGy per fraction with 6 MV energy. The Optically Stimulated Luminescence Detector(OSLD) was used to measure the skin dose at four points (Med 1, Med 2, Lat 1, Lat 2) on the 3D phantom and ion-chamber (FC65-G) were used to perform the in-vivo dosimetry at the two points (Anterior, Posterior). The Skin dose and in-vivo dosimetry were measured with reference air gap (3 cm) and increased air gaps (1, 2, 3, 4, 5, 6 cm) from reference distance between the couch and 3D phantom. Results: As a result, measurement for the skin dose at lateral point showed a similar value within ${\pm}4%$ compared to the plan. While the air gap increased, skin dose at medial 1 was reduced. And it was also reduced over 7 % when the air gap was more than 3 cm compared to radiation therapy plan. At medial 2 it was reduced over 4 % as well. The changes of dose from variety of the air gap showed similar value within ${\pm}1%$ at posterior. As the air gap was increased, the dose at anterior was also increased and it was increased by 1 % from the air gap distance more than 3 cm. Conclusion: Dosimetrical measurement using 3D phantom is very useful to evaluate the dosimetric effects of couch attenuation and air gaps for prone breast radiation therapy. And it is possible to reduce the skin dose and increase the accuracy of the radiation dose delivery by appling the optimized air gap.

  • PDF

Dosimetric Evaluation of Amplitude-based Respiratory Gating for Delivery of Volumetric Modulated Arc Therapy (진폭 기반 호흡연동 체적변조회전방사선치료의 선량학적 평가)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Park, Jeong Hoon;Min, Chul Kee;Shin, Dong Oh;Choi, Sang Hyoun;Park, Seungwoo;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.127-136
    • /
    • 2015
  • The purpose of this study is to perform a dosimetric evaluation of amplitude-based respiratory gating for the delivery of volumetric modulated arc therapy (VMAT). We selected two types of breathing patterns, subjectively among patients with respiratory-gated treatment log files. For patients that showed consistent breathing patterns (CBP) relative to the 4D CT respiration patterns, the variability of the breath-holding position during treatment was observed within the thresholds. However, patients with inconsistent breathing patterns (IBP) show differences relative to those with CBP. The relative isodose distribution was evaluated using an EBT3 film by comparing gated delivery to static delivery, and an absolute dose measurement was performed with a $0.6cm^3$ Farmer-type ion chamber. The passing rate percentages under the 3%/3 mm gamma analysis for Patients 1, 2 and 3 were respectively 93.18%, 91.16%, and 95.46% for CBP, and 66.77%, 48.79%, and 40.36% for IBP. Under the more stringent criteria of 2%/2 mm, passing rates for Patients 1, 2 and 3 were respectively 73.05%, 67.14%, and 86.85% for CBP, and 46.53%, 32.73%, and 36.51% for IBP. The ion chamber measurements were within 3.5%, on average, of those calculated by the TPS and within 2.0%, on average, when compared to the static-point dose measurements for all cases of CBP. Inconsistent breathing patterns between 4D CT simulation and treatment may cause considerable dosimetric differences. Therefore, patient training is important to maintain consistent breathing amplitude during CT scan acquisition and treatment delivery.

Evaluation of Dosimetric Characteristics of Reproducibility, Linearity and Dose Dependence of Optically Stimulated Luminescence Dosimeters in Co-60 Gamma-rays (Co-60 감마선을 이용한 광자극발광선량계의 재현성, 선형성, 선량의존성에 대한 특성평가)

  • Han, Su Chul;Choi, Sang Hyoun;Park, Seungwoo;Kim, Chul Hang;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Kim, Chan Hyeong;Ji, Young Hoon;Yi, Chul Young;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • We aimed to evaluate the dosimetric characteristics of reproducibility, linearity and dose dependence of optical stimulated luminance dosimeter (OSLD) in the Co-60 Gamma-rays and to analyze with a precedent study in field of the diagnostic radiography and radiotherapy. The reproducibility was 0.76% of the coefficient of variation, the homogeneity was within 1.5% of the coefficient of variation and OSLD had supra-linear response more than 3 Gy. So the correlation between dose and count was fitted by quadratic function. The count depletion by repeated reading was 0.04% per reading regardless of the irradiated dose. And the half time of decay curve according to the irradiated dose was 0.68 min. with 1 Gy, 1.04 min. with 5 Gy, and 1.10 min. with 10 Gy, respectively. In case of annealing for 30 min, the removal rate was 88% with 1 Gy, 90% with 5 Gy, and 92% with 10 Gy, respectively and 99% in case of annealing time for 4 hour. It is feasible to use OSLDs for dose evaluation in Co-60 Gamma-rays when considering the uncertainty on the procedure according to the irradiated dose.

A Study of Dosimetric Characteristics of a Diamond Detector for Small Field Photon Beams (광자선 소조사면에 대한 다이아몬드 검출기의 선량특성에 관한 연구)

  • Loh, John-K.;Park, Sung-Y.;Shin, Dong-O.;Kwon, Soo-I.;Lee, Kil-D.;Kim, Woo-C.;Cho, Young-K.
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.195-203
    • /
    • 1999
  • It is difficult to determine dosimetric characteristics for small field photon beams since such small fields do not achieve complete lateral electronic equilibrium and have steep dose gradients. Dosimetric characteristics of small field 4, 6, and 10 MeV photon beams have been measured in water with a diamond detector and compared to measurements using small volume cylindrical and plane parallel ionization chambers. Percent depth dose (PDD) and beam profiles for 6 and 10 MeV photon beams were measured with diamond detector and cylindrical ion chamber for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. Total scatter factors($S_{c,p}$) for 4, 6, and 10 MeV photon beams were measured with diamond detector, cylindrical and plane parallel ion chambers for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. The $S_{c,p}$ factors obtained with three detectors for 4, 6, and 10 MeV photon beams agreed well ($\pm1.2%$) for field sizes greater than $2{\times}2,\;2.5{\times}2.5,\;and\;3{\times}3\;cm^2$, respectively. For smaller field sizes, the cylindrical and plane parallel ionization chambers measure a smaller $S_{c,p}$ factor, as a result of the steep dose gradients across their sensitive volumes. The PDD values obtained with diamond detector and cylindrical ionization chamber for 6 and 10MeV photon beams agreed well ($\pm1.5%$) for field sizes greater than $4{\times}4\;cm^2$. For smaller field sizes, diamond detector produced a depth-dose curve which had a significantly shallower falloff than that obtained from the measurements of relative depth-dose with a cylindrical ionization chamber. For the measurements of beam profiles, a distortion in terms of broadened penumbra was observed with a cylindrical ionization chamber since diamond detector exhibited higher spatial resolution. The diamond detector with small sensitive volume, near water equivalent, and high spatial resolution is suitable detector compared to ionization chambers for the measurements of small field photon beams.

  • PDF

Comparison of Dosimetry Protocols in High Energy Electron Beams (고에너지 전자선에 대한 표준측정법간의 비교)

  • 박성용;서태석;김회남;신동오;지영훈;군수일;이길동;추성실;최보영
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.267-276
    • /
    • 1998
  • Any detector inserted into a phantom should have such a geometry that it caused as small as possible perturbation of the electron fluence. Plane parallel chambers meet this requirement better than other chambers of configurations. IAEA protocol recommends the use of plane parallel chambers for this reason. However, the cylindrical chambers are widely used for convenient. The purpose of this study is to evaluate the absorbed dose due to the differences of four different dosimetry protocols such as IAEA protocol using cylindrical chamber, TG 21 protocol using cylindrical chamber, Markus protocol using plane parallel chamber, and TG 39 report for the calibration of plane parallel chamber in electron beams. Depth-ionization measurements for the electron beams of nominal energy 6, 9, 12, 15, and 18 MeV from Siemens accelerator with a 10$\times$10 cm$^2$ field size were made using a radiation field analyser with 0.125 cc ion chamber. Dosimetric measurements by IAEA and TG 21 protocol were made with a farmer type ionization chamber in solid water for each electron energy, respectively. Dosimetric measurements by Markus protocol were made with a plane parallel ionization chamber in solid water for each electron energy, respectively. The cavity-gas calibration factor for the plane parallel chamber was obtained with the use of 18 MeV electron beam as guided by TG 39 report. Dosimetric measurements by TG 39 were performed with a plane parallel ionization chamber in solid water for each electron energy, respectively. For all the energies and protocols, measurements were made along the central axis of the distance of 100 cm (SSD = 100 cm) with 10$\times$10 cm$^2$ field size at the depth of d$_{max}$ for each electron beam, respectively. In the case of 18 MeV, the discrepancy of 0.9 % between IAEA and TG 21 was found and the two protocols were agreed within 0.7 % for other energies. In the case of 18 MeV and 6 MeV, the discrepancies of $\pm$ 0.8 % between Markus and TG 39 was found, respectively and the two protocols were agreed within 0.5 % for other energies. Since the discrepancy of 1.6 % between cylindrical and plane parallel chamber was found for 18 MeV, it is suggested to get the calibration factor using other method as guided. by TG 39.9.

  • PDF

Dosimetric Analysis of Respiratory-Gated RapidArc with Varying Gating Window Times (호흡연동 래피드아크 치료 시 빔 조사 구간 설정에 따른 선량 변화 분석)

  • Yoon, Mee Sun;Kim, Yong-Hyeob;Jeong, Jae-Uk;Nam, Taek-Keun;Ahn, Sung-Ja;Chung, Woong-Ki;Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • The gated RapidArc may produce a dosimetric error due to the stop-and-go motion of heavy gantry which can misalign the gantry restart position and reduce the accuracy of important factors in RapidArc delivery such as MLC movement and gantry speed. In this study, the effect of stop-and-go motion in gated RapidArc was analyzed with varying gating window time, which determines the total number of stop-and-go motions. Total 10 RapidArc plans for treatment of liver cancer were prepared. The RPM gating system and the moving phantom were used to set up the accurate gating window time. Two different delivery quality assurance (DQA) plans were created for each RapidArc plan. One is the portal dosimetry plan and the other is MapCHECK2 plan. The respiratory cycle was set to 4 sec and DQA plans were delivered with three different gating conditions: no gating, 1-sec gating window, and 2-sec gating window. The error between calculated dose and measured dose was evaluated based on the pass rate calculated using the gamma evaluation method with 3%/3 mm criteria. The average pass rates in the portal dosimetry plans were $98.72{\pm}0.82%$, $94.91{\pm}1.64%$, and $98.23{\pm}0.97%$ for no gating, 1-sec gating, and 2-sec gating, respectively. The average pass rates in MapCHECK2 plans were $97.80{\pm}0.91%$, $95.38{\pm}1.31%$, and $97.50{\pm}0.96%$ for no gating, 1-sec gating, and 2-sec gating, respectively. We verified that the dosimetric accuracy of gated RapidArc increases as gating window time increases and efforts should be made to increase gating window time during the RapidArc treatment process.

Advances and Challenges in Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma

  • Qu, Song;Liang, Zhong-Guo;Zhu, Xiao-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1687-1692
    • /
    • 2015
  • Nasopharyngeal carcinoma is an endemic disease within specific regions in the world. Radiotherapy is the main treatment. In recent decades, intensity-modulated radiation therapy has undergone a rapid evolution. Compared with two-dimensional radiotherapy and/or three-dimensional conformal radiotherapy, evidence has shown it may improve quality of life and prognosis for patients with nasopharyngeal carcinoma. In addition, helical tomotherapy is an emerging technology of intensity-modulated radiation therapy. Its superiority in dosimetric and clinical outcomes has been demonstrated when compared to traditional intensity-modulated radiation therapy. However, many challenges need to be overcome for intensity-modulated radiation therapy of nasopharyngeal carcinoma in the future. Issues such as the status of concurrent chemotherapy, updating of target delineation, the role of replanning during IMRT, the causes of the main local failure pattern require settlement. The present study reviews traditional intensity-modulated radiation therapy, helical tomotherapy, and new challenges in the management of nasopharyngeal carcinoma.

Study on the characteristics of Insight dental x-ray film (Kodak Insight 치과필름의 특성에 관한 연구)

  • Song Young-Han;Lee Wan;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.33 no.1
    • /
    • pp.21-26
    • /
    • 2003
  • Purpose: To investigate the characteristics of the newly marketed, Insight dental X-ray film. Materials and Methods: Kodak Ultraspeed (DF-58), E-speed, Agfa Dentus M2, and Kodak Insight (IP-21) films were radiographed using a Trophy intra-oral radiographic machine. 10 step exposure times were prepared and each step exposure was monitored using a FH 40G (ESM Eberline Instruments) dosimeter for each of the 4 types of intra-oral film. All films were manually processed and the radiographic densities at 6 sites of each processed film were measured, and the characteristic curves of each of the 4 types intra-oral films were created utilizing these dosimetric data and radiographic densities, based on ISO 5779. The film contrast, speed, and base plus fog density of Insight film were compared with those of the 3 other films examined in this experiment. Results : E-speed film showed greatest average gradients followed by Insight film. E-speed and Ultraspeed film showed great average gradients at low density levels. Insight film showed the fastest speed followed by E-speed, Dentus M2 and Ultraspeed film. Dentus M2 film showed greatest base plus fog density level followed by Insight film. Conclusion : Kodak Insight film showed fastest film speed with comparable film contrast on characteristic curve.

  • PDF

A Study on Dosimetric Characterization of Direct Yellow 12 Dye at High Radiation γ-Dose

  • Batool, Javaria;Shahid, Shaukat Ali;Ramiza, Ramiza;Akhtar, Nasim;Naz, Afshan;Yaseen, Maria;Ullah, Inam;Nadeem, Muhammad;Shakir, Imran
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2265-2268
    • /
    • 2012
  • Aqueous solution of oxygenated Direct yellow 12 dye has been evaluated spectrophotometrically as a possible gamma rays dosimeter. The neutral (pH-7), alkaline (pH-12.5) and acidic (pH-5.5) aqueous solution of the dye were prepared and exposed to various gamma doses. Absorption spectra of unirradiated and irradiated solutions were recorded at 400 nm peak. The increase in absorbance with the increase in irradiation dose was observed from 1 to 6 kGy. The stability response of the dye solution for different environmental conditions such as temperature (low & high), light and darkness were investigated during post irradiation storage for ten days. The dye solution showed high stability in darkness for the studied period. The optical density of the dye solution was found to be decreased at high temperature storage.

Dosimetric Evaluation of an Automatically Converted Radiation Therapy Plan between Radixact Machines

  • Lee, Mi Young;Kang, Dae Gyu;Kim, Jin Sung
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.153-162
    • /
    • 2020
  • Purpose: We aim to evaluate the accuracy and effectiveness of an automatically converted radiation therapy plan between Radixact machines by comparing the original plan with the transferred plan. Methods: The study involved a total of 20 patients for each randomly selected treatment site who received radiation treatment with Radixact. We set up the cheese phantom (Gammex RMI, Middleton, WI, USA) with an Exradin A1SL ion chamber (Standard Imaging, Madison, WI, USA) and GAFCHROMIC EBT3 film (International Specialty Products, Wayne, NJ, USA) inserted. We used three methods to evaluate an automatically converted radiation therapy plan using the features of the Plan transfer. First, we evaluated and compared Planning target volume (PTV) coverage (homogeneity index, HI; conformity index, CI) and organs at risk (OAR) dose statistics. Second, we compared the absolute dose using an ion chamber. Lastly, we analyzed gamma passing rates using film. Results: Our results showed that the difference in PTV coverage was 1.72% in HI and 0.17% in CI, and majority of the difference in OAR was within 1% across all sites. The difference (%) in absolute dose values was averaging 0.74%. In addition, the gamma passing rate was 99.64% for 3%/3 mm and 97.08% for 2%/2 mm. Conclusions: The Plan transfer function can be reliably used in appropriate situations.