• Title/Summary/Keyword: Dose uniformity

Search Result 96, Processing Time 0.032 seconds

Dose Distribution of 3-Channel Ovoid Applicator (3-Channel Vaginal Ovoids의 선량분포 특성)

  • Kim Chang Hee;Yun Sang Mo;Kim Sung Kyu;Shin Sei One
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.134-139
    • /
    • 2004
  • This study was aimed to develop a new ovoid applicator for vaginal high-dose rate intracavitary radiation therapy, evaluate uniformity of dose distribution, and assess clinical applicability. The authors evaluated dose uniformity of vaginal mucosa according to 5-different ovoid-separation using 2-channel and modified 3-channel ovoid applicator. There were no significant differences in the dose distribution along the vaginal mucosa with 2 and 2.5 cm separations, but there were between the 2-channel and 3-channel ovoid applicator with a separation of 3 cm or more. Although a low dose area was shown between two ovoid applicators with the 2-channel ovoid applicator, the dose distribution along the vaginal mucosa with the 3-channel ovoid applicator was very uniform.

  • PDF

The Effects of Reducing a Dose on the Genital Gland at a CT Scan on the Whole Abdomen According to the Shielding Material (Whole Abdomen CT촬영 시 차폐 재료에 따른 생식선 선량 감쇠 효과)

  • Gang, Eun Bo;Park, Cheol Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.419-425
    • /
    • 2016
  • The purpose of this study is to produce a shielding material to reduce a dose on the genital gland, one of the superficial organs, at a CT scan on the whole abdomen and hardly affect picture quality and examine its utility. This research made 22 mm silicone and 7.3 mm aluminum having the similar material quality and effect of previous bismuth. By using the non-shield, bismuth, 22 mm silicone, and 7.3 mm aluminum shielding materials, this author conducted a comparative experiment measuring the decay rate of the genital gland's exposure to radiation, change of the CT number and noise in the image, and the CT number, noise, and uniformity in the AAPM phantom. According to the results, exposure to radiation is reduced in bismuth as 29.96%, silicone 22 mm as 13.10%, and 7.3 mm aluminum as 18.27%. In bismuth, however, the image's CT number varies a lot, and uniformity is measured to be inappropriate in the AAPM phantom scan; therefore, it indicates great change in terms of picture quality in superficial organs like the genital gland. Concerning superficial organs like the genital gland, if 22 mm silicone and 7.3 mm aluminum are used as shielding materials, it will be helpful in reducing variation in picture quality and also decreasing radiation exposure to radiation.

Evaluation of Image Uniformity and Radiolucency for Computed Tomography Phantom Made of 3-Dimensional Printing of Fused Deposition Modeling Technology by Using Acrylonitrile Butadiene Styrene Resin (아크릴로나이트릴·뷰타다이엔·스타이렌 수지와 용융적층조형 방식의 3차원 프린팅 기술로 제작된 전산화단층영상장치 팬톰에서 영상 균일성 및 X선 투과성 평가)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.337-344
    • /
    • 2016
  • The purpose of this study was to evaluate the radiolucency for the phantom output to the 3D printing technology. The 3D printing technology was applied for FDM (fused deposition modeling) method and was used the material of ABS (acrylonitrile butadiene styrene) resin. The phantom was designed in cylindrical uniformity. An image uniformity was measured by a cross-sectional images of the 3D printed phantom obtained from the CT equipment. The evaluation of radiolucency was measured exposure dose by the inserted ion-chamber from the 3D printed phantom. As a results, the average of uniformity in the cross-sectional CT image was 2.70 HU and the correlation of radiolucency between PMMA CT phantom and 3D printed ABS phantom is found to have a high correlation to 0.976. In the future, this results will be expected to be used as the basis for the phantom production of the radiation quality control by used 3D printing technology.

Implementation of an in vitro exposure system for 28 GHz

  • Lee, Young Seung;Dzagbletey, Philip Ayiku;Chung, Jae-Young;Jeon, Sang Bong;Lee, Ae-Kyoung;Kim, Nam;Song, Seong Jong;Choi, Hyung-Do
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.837-845
    • /
    • 2020
  • The objective of this study was to implement an in vitro exposure system for 28 GHz to investigate the biological effects of fifth-generation (5G) communication. A signal source of 28 GHz for 5G millimeter-wave (MMW) deployment was developed, followed by a variable attenuator for antenna input power control. A power amplifier was also customized to ensure a maximum output power of 10 W for high-power 28-GHz exposure. A 3-dB uniformity over the 80 mm × 80 mm area that corresponds to four Petri dishes of three-dimensional cell cultures can be obtained using a customized choke-ring-type antenna. An infrared camera is employed for temperature regulation during exposure by adjusting the airflow cooling rate via real-time feedback to the incubator. The reported measurement results confirm that the input power control, uniformity, and temperature regulation for 28-GHz exposure were successfully accomplished, indicating the possibility of a wide application of the implemented in vitro exposure system in the fields of various MMW dose-response studies.

Usability Evaluation of Lateral Sliding Table in CT Examination (CT 검사에서 Lateral Sliding Table의 유용성 평가)

  • Choi, Jeong Hun;Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.677-684
    • /
    • 2020
  • Miscentering in the left and right X axis direction during CT examination affects dose and quality. When the CT Gantry Isocenter and the center of the examination objective are matched using the Lateral Sliding Table, the image quality is improved and the exposure dose is reduced. CTDI Head Phantom (Kimda, Korea) and dosimeter (Ray Safe, Sweden) were used to measure dose comparison CTDI (mGy) due to center deviation, and Water Phantom (HITACHI, Japan) was used to measure noise to see the difference in uniformity due to center deviation. Measurements of doses for dose comparison CTDI (mGy) with a deviation showed that doses were consistently reduced and exact dose was not projected until they were moved to 80 mm by 20 mm from the Isocenter. SD values were measured to see the difference in uniformity due to center deviation and the noise continued to increase until it was moved by 20 mm to 80 mm. The range of collimation has increased by the extent of deviating from the center and the range of exposure has increased. Using the Lateral Sliding Table, you can easily adjust the Isocenter, increase the quality of the image by adjusting the Isocenter in areaa such as the cardiac examination of the location away from the Isocenter, Extreme bone and Shoulder, and greatly reduce the collimation to the Isocenter, so it can be used to reduce unnecessary exposure dose.

GafChromic RTQA Film Dosimetry for Laser Beam with Photodynamic Therapy (GafChromic RTQA Film을 이용한 광역학적 치료용 레이저의 선질 측정)

  • Lee, Byung Koo;Lim, Hyun Soo;Kenar, Necla
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.73-79
    • /
    • 2013
  • Purpose: The purposes of this study were to measure the dose distribution of Photodynamic therapy(PDT) laser with 635 nm wavelength using GafChromic film. Method & Result: We made each output 300 J by changing mW and sec using the laser beam radiation mode such as C.W(Continuous Wave) mode, Pulse mode and Burst Pulse mode and measured the does at 0 mm and 5 mm of distance from optic fiber catheter end to the film, and at 5 mm distance by changing the angle of the end of the optic fiber catheter as $0^{\circ}$ and $0.5^{\circ}$. The radiated film was scanned and OD(Optical Density) was compared. And two-dimensional isodose curves were obtained and the consistency of shapes was compared. It was confirmed that there was consistency between optic density and the dose radiated on the film when we radiated GafChromic film by changing distance and angle of 300 J output in each radiation mode coordinating mW and sec. Conclusion: In this study, we could identify the stability according to changes in laser beam modes, changes in output according to distance, changes in uniformity according to angle, and beam profiles using GafChromic film, and we could also get two-dimensional isodose curve. It was found that small change in the distance and angle that is made when optic fiber catheter was contacted on the treatment area did not make big effects on the output of beam and the uniformity of dose, and it was also found that GafChromic film could be utilized for the purpose of QA of PDT laser beam.

Study for Automatic Exposure Control Technique (AEC) in SPECT/CT for Reducing Exposure Dose and Influencing Image Quality (SPECT/CT에서 자동노출제어(AEC)를 이용함으로써 얻어지는 영상의 질 평가와 피폭선량 감소에 관한 고찰)

  • Yoon, Seok-Hwan;Lee, Sung-Hwan;Cho, Seong-Wook;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.33-38
    • /
    • 2014
  • Purpose Auto exposure control (AEC) in SPECT/CT automatically controls the exposure dose (mA) according to patient's shape and size. The aim of this study was to evaluate the effect of AEC in SPECT/CT on exposure dose reduction and image quality. Materials and Methods The model of SPECT/CT used in this study was Discovery 670 (GE, USA), Smart mA for AEC; and $^{99m}Tc$ as a radioisotope. To compare SPECT and CT images by CT exposure dose variation, we used a standard technique set at 80, 100, 120, 140 kVp, 10, 30, 50, 100, 150, 200, 250 mA, and AEC at 80, 100, 120, 140 kVp, 10-250 mA. To evaluate resolution and contrast of SPECT images, triple line phantom and flangeless Esser PET phantom were used. For CT images, noise and uniformity were checked by anthropomrphic chest phantom. For dose evaluation to find DLP value, anthropomorphic chest phantom was used and the CT protocol of torso was applied by standard technique (120 kVp, 100 mA) and AEC (120 kVp, 10-250 mA). Results When standard and AEC were applied, the resolutions at SPECT images with attenuation correction (AC) were the same as FWHM by center 3.65 mm, left 3.48 mm, right 3.61 mm. Contrasts of standard and AEC showed no significant difference: standard 53.5, 29.8, 22.5, 15.8, 6.0, AEC 53.5, 29.6, 22.4, 15.7, 6.1 In CT images, noise values at standard and AEC were 15.4 and 18.5 respectively. The application of AEC increases noise but the value of coefficient variation were 33.8, 24.9 respectively, obtaining uniform noise image. The values of DLP at standard and AEC were 426.78 and 352.09 each, which shows that the application of AEC decreases exposure dose more than standard by approximately 18%. Conclusion The results of our study show that there was no difference of AC in SPECT images based on the CT exposure dose variation at SPECT/CT images. It was found that the increased CT exposure dose leads to the improvement of CT image quality but also increases the exposure dose. Thus, the use of AEC in SPECT/CT contributes to obtaining equal AC SPECT images, and uniform noise in CT images while reducing exposure dose.

  • PDF

Monte Carlo Simulation of the Carbon Beam Nozzle for the Biomedical Research Facility in RAON (한국형 중이온 가속기 RAON의 의생물 연구시설 탄소 빔 노즐에 대한 Monte Carlo 시뮬레이션)

  • Bae, Jae-Beom;Cho, Byung-Cheol;Kwak, Jung-Won;Park, Woo-Yoon;Lim, Young-Kyung;Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of the Monte Carlo simulation study was to provide the optimized nozzle design to satisfy the beam conditions for biomedical researches in the Korean heavy-ion accelerator, RAON. The nozzle design was required to produce $C^{12}$ beam satisfying the three conditions; the maximum field size, the dose uniformity and the beam contamination. We employed the GEANT4 toolkit in Monte Carlo simulation to optimize the nozzle design. The beams for biomedical researches were required that the maximum field size should be more than $15{\times}15cm^2$, the dose uniformity was to be less than 3% and the level of beam contamination due to the scattered radiation from collimation systems was less than 5% of total dose. For the field size, we optimized the tilting angle of the circularly rotating beam controlled by a pair of dipole magnets at the most upstream of the user beam line unit and the thickness of the scatter plate located downstream of the dipole magnets. The values of beam scanning angle and the thickness of the scatter plate could be successfully optimized to be $0.5^{\circ}$ and 0.05 cm via this Monte Carlo simulation analysis. For the dose uniformity and the beam contamination, we introduced the new beam configuration technique by the combination of scanning and static beams. With the combination of a central static beam and a circularly rotating beam with the tilting angle of $0.5^{\circ}$ to beam axis, the dose uniformity could be established to be 1.1% in $15{\times}15cm^2$ sized maximum field. For the beam contamination, it was determined by the ratio of the absorbed doses delivered by $C^{12}$ ion and other particles. The level of the beam contamination could be achieved to be less than 2.5% of total dose in the region from 5 cm to 17 cm water equivalent depth in the combined beam configuration. Based on the results, we could establish the optimized nozzle design satisfying the beam conditions which were required for biomedical researches.

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.

Evaluation of QC Value Variation and Overlapping Use According to Aging of 57Co Sealed Source (57Co 밀봉선원의 노후도에 따른 균일도의 변동과 중첩사용에 관한 유용성 평가)

  • Lee, Jong-Hun;Cho, Sung-kil;Shim, Dong-Oh
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.50-53
    • /
    • 2017
  • Purpose The change in uniformity due to the decreasement in dose should be known. $^{57}Co$ sealed sources are easy to manage and use as QC sources replacing $^{99m}Tc$. Overlapping sealed sources are expected to show variations in dose due to attenuation between sealed sources. Materials and Methods A total of three experiments were conducted. The first experiment is to observe the change in the degree of senescence of the $^{57}Co$ sealed source. The second experiment is to compare the single source and overlaped source at similar doses. In the third experiment, the sources of different doses were compared on each other to determine the changes due to the attenuation between the overlapping sources. Results The results of the first experiment did not exceed the acceptable range. but each crew showed a difference. There was no statistically significant difference in the measurement of uniformity on second and third experiment Conclusion It is believed that a $^{57}Co$ sealed source can be used as a superimposed source. It is not only economical but also convenient to use. daily uniformity measurements will help reduce scan time and speed up the testing process.

  • PDF