• Title/Summary/Keyword: Dose calculation accuracy

Search Result 90, Processing Time 0.023 seconds

Dose Evaluation of TPS according to Treatment Sites in IMRT (세기조절방사선치료 시 치료 부위에 따른 치료계획 시스템 간 선량평가)

  • Kim, Jin Man;Kim, Jong Sik;Hong, Chae Seon;Park, Ju Young;Park, Su Yeon;Ju, Sang Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • Purpose: This study executed therapy plans on prostate cancer (homogeneous density area) and lung cancer (non-homogeneous density area) using radiation treatment planning systems such as $Pinnacle^3$ (version 9.2, Philips Medical Systems, USA) and Eclipse (version 10.0, Varian Medical Systems, USA) in order to quantify the difference between dose calculation according to density in IMRT. Materials and Methods: The subjects were prostate cancer patients (n=5) and lung cancer patients (n=5) who had therapies in our hospital. Identical constraints and optimization process according to the Protocol were administered on the subjects. For the therapy plan of prostate cancer patients, 10 MV and 7Beam were used and 2.5 Gy was prescribed in 28 fx to make 70 Gy in total. For lung cancer patients, 6 MV and 6Beam were used and 2 Gy was prescribed in 33 fx to make 66 Gy in total. Through two therapy planning systems, maximum dose, average dose, and minimum dose of OAR (Organ at Risk) of CTV, PTV and around tumor were investigated. Results: In prostate cancer, both therapy planning systems showed within 2% change of dose of CTV and PTV and normal organs (Bladder, Both femur and Rectum out) near the tumor satisfied the dose constraints. In lung cancer, CTV and PTV showed less than 2% changes in dose and normal organs (Esophagus, Spinal cord and Both lungs) satisfied dose restrictions. However, the minimum dose of Eclipse therapy plan was 1.9% higher in CTV and 3.5% higher in PTV, and in case of both lungs there was 3.0% difference at V5 Gy. Conclusion: Each TPS according to the density satisfied dose limits of our hospital proving the clinical accuracy. It is considered more accurate and precise therapy plan can be made if studies on treatment planning for diverse parts and the application of such TPS are made.

  • PDF

Practical Output Dosimetry with Undefined $N_{dw}{^{Co-60}}$ of Cylindrical Ionization Chamber for High Energy Photon Beams of Linear Accelerator ($N_{dw}{^{Co-60}}$이 정의되지 않은 원통형 이온전리함을 이용한 고에너지 광자선의 임상적 출력선량 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.114-122
    • /
    • 2012
  • For the determination of absorbed dose to water from a linear accelerator photon beams, it needs a exposure calibration factor $N_x$ or air kerma calibration factor $N_k$ of air ionization chamber. We used the exposure calibration factor $N_x$ to find the absorbed dose calibration factors of water in a reference source through the TG-21 and TRS-277 protocol. TG-21 used for determine the absorbed dose in accuracy, but it required complex calculations including the chamber dependent factors. The authors obtained the absorbed dose calibration factor $N_{dw}{^{Co-60}}$ for reduce the complex calculations with unknown $N_{dw}$ only with $N_x$ or $N_k$ calibration factor in a TM31010 (S/N 1055, 1057) ionization chambers. The results showed the uncertainty of calculated $N_{dw}$ of IC-15 which was known the $N_x$ and $N_{dw}$ is within -0.6% in TG-21, but 1.0% in TRS-277. and TM31010 was compared the $N_{dw}$ of SSDL to that of PSDL as shown the 0.4%, -2.8% uncertainty, respectively. The authors experimented with good agreement the calculated $N_{dw}$ is reliable for cross check the discrepancy of the calibration factor with unknown that of TM31010 and IC-15 chamber.

Usefulness of Gated RapidArc Radiation Therapy Patient evaluation and applied with the Amplitude mode (호흡 동조 체적 세기조절 회전 방사선치료의 유용성 평가와 진폭모드를 이용한 환자적용)

  • Kim, Sung Ki;Lim, Hhyun Sil;Kim, Wan Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • Purpose : This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95% agreement. The rotational intensity modulated radiation therapy, respiratory synchronized to the respiratory cycle created Amplitude mode and the actual patient's breathing cycle could be seen that a good agreement. Conclusion : When you are treated Non-respiratory and respiratory method between volumetric intensity modulated radiation therapy rotation of the absolute dose and dose distribution showed a very good agreement. This breathing technique tuning volumetric intensity modulated radiation therapy using a rotary moving along the thoracic or abdominal breathing can be applied to the treatment of tumors is considered. The actual treatment of patients through the goggles of the respiratory cycle to create Amplitude mode Gated RapidArc treatment equipment that does not automatically apply to the results about 5-6 seconds stopped breathing in breathing synchronized rotary volumetric intensity modulated radiation therapy facilitate could see complement.

Development of Indirect Dosimetry by Calculation Method in the Diagnostic X-ray Equipment (진단용엑스선촬영장치의 간접 선량 계산법 개발)

  • Kim, Jung-Su;Kim, Sung-Hwan;Jeon, Min-Cheol;Ju, Won-Ha;Jeong, Min-Gyu;Kim, Mi-Jeong;Lee, Seung-Youl;Lee, Tae-Hee;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.587-594
    • /
    • 2018
  • The purpose of this study was to develop the indirect dosimetry by calculation (IDC) method for diagnostic X-ray equipment. The experiments were performed with inverter type X-ray tubes: Toshiba (E7252X, Japan) and Varian (RAD-14, USA). For the development method, we first applied the standard quality of X-ray beam shown in the TRS457 document, and second, to produce the constants of trendline for the IDC, the total filtration on X-ray beam was subdivided. Third, in order to increase the precision, the energy region was divided into the high energy region and the low energy region and developed by the IDC. In order to verify the IDC, mean dose (mR) values were measured for three Toshiba X-ray tubes and three Varian X-ray tubes at clinical medical institutions and then compared with the IDC on the 2013. As a result, compared with the previous study, the accuracy of the IDC of this study were improved by 2.71% and 9.91% in Toshiba and Varian X-ray tubes, respectively.

HVL Measurement of the Miniature X-Ray Tube Using Diode Detector (다이오드 검출기를 이용한 초소형 X선관(Miniature X-ray Tube)의 반가층 측정)

  • Kim, Ju-Hye;An, So-Hyeon;Oh, Yoon-Jin;Ji, Yoon-Seo;Huh, Jang-Yong;Kang, Chang-Mu;Suh, Hyunsuk;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.279-284
    • /
    • 2012
  • The X ray has been widely used in both diagnosis and treatment. Recently, a miniature X ray tube has been developed for radiotherapy. The miniature X ray tube is directly inserted into the body irradiated, so that X rays can be guided to a target at various incident angles according to collimator geometry and, thus, minimize patient dose. If such features of the miniature X ray tube can be applied to development of X ray imaging as well as radiation treatment, it is expected to open a new chapter in the field of diagnostic X ray. However, the miniature X ray tube requires an added filter and a collimator for diagnostic purpose because it was designed for radiotherapy. Therefore, a collimator and an added filter were manufactured for the miniature X ray tube, and mounted on. In this study, we evaluated beam characteristics of the miniature X ray tube for diagnostic X ray system and accuracy of measuring the HVL. We used the Si PIN Photodiode type Piranha detector (Piranha, RTI, Sweden) and estimated the HVL of the miniature X ray tube with added filter and without added filter. Through an another measurement using Al filter, we evaluated the accuracy of the HVL obtained from a direct measurement using the automatic HVL calculation function provided by the Piranha detector. As a result, the HVL of the miniature X ray tube was increased around 1.9 times with the added filter mounted on. So we demonstrated that the HVL was suitable for diagnostic X ray system. In the case that the added filter was not mounted on, the HVL obtained from use of the automatic HVL calculation function provided by Piranha detector was 50% higher than the HVL estimated using Al filter. Therefore, the HVL automatic measurement from the Piranha detector cannot be used for the HVL calculation. However, when the added filter was mounted on, the HVL automatic measurement value using the Piranha detector was approximately 15% lower than the estimated value using Al filter. It implies that the HVL automatic measurement can be used to estimate the HVL of the miniature X ray tube with the added filter mounted on without a more complicated measurement method using Al filter. It is expected that the automatic HVL measurement provided by the Piranha detector enables to make kV-X ray characterization easier.

Determination of Risk Ranking of Combination of Potentially Hazardous Foods and Foodborne Pathogens Using a Risk Ranger (Risk Ranger를 활용한 잠재적 위해식품과 미생물 조합에 대한 위해순위 결정)

  • Min, Kyung-Jin;Hwang, In-Gyun;Lee, Soon-Ho;Cho, Joon-Il;Yoon, Ki-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.91-99
    • /
    • 2011
  • Risk ranking must be determined for various hazards/food combinations to conduct microbial risk management effectively. Risk Ranger is a simple, easy-to-use calculation tool developed in Microsoft Excel and designed to rank the risk (low, medium, and high) for semi-quantitative microbial risk assessment. The user is required to answer 11 questions in Risk Ranger related to 1) severity of the hazard, 2) likelihood of a disease-causing dose of the hazard being present in the meal, and 3) the probability of exposure to the hazard in a defined time. This study determined the risk ranking for twenty three combinations of foodborne pathogens/potentially hazardous foods (PHFs) using a Risk Ranger. In this study, pathogenic E. coli in fresh cut produce salad was scored as 79, which was the highest rank among the 23 combinations of the foodborne pathogens and PHFs. On the other hand, zero risk was obtained with V parahaemolyticus in sushi, Salmonella in meat products and E. coli O157:H7 in hamburger patties. Although Risk Ranger is very simple method to rate the risk of foodborne pathogens and PHFs combination, the accuracy of result was mainly affected by the availability and accuracy of data in the literature. According to the result of literature review, the data are needed for contamination rate of raw materials, consumption amount/frequency of PHFs, and the effect of processing on pathogen. Risk ranking must be continuously revalidated with new data.

Accuracy Evaluation of Treatment Planning System Using Irregular-surface Water Phantom (요철 표면 팬텀을 이용한 치료계획시스템 선량계산 정확성 평가)

  • Jeong, Dong-Hyeok;Kim, Ki-Hwan;Lee, Kang-Kyoo;Moon, Sun-Rock;Kim, Jhin-Kee;Shin, Kyo-Chul;Oh, Young-Kee;Kim, Jeung-Kee;Cho, Moon-June;Kim, Jun-Sang
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • We evaluated on the calculation accuracy of treatment planning system (TPS) with phantom having convex and concave surface. The TPS is Eclipse (Varian, USA) using both algorithms AAA and PBC for photon dose calculations. PBC algorithms have three corrections of Batho, modified Batho (M-Batho), and equivalent TAR (E-TAR). The field sizes were $10{\times}10\;cm^2$ and $20{\times}20\;cm^2$, and MLC-shaped fields for these fields. We measured doses at three depths 5, 10 and 15cm in phantom of SSD=90cm in the condition of inserted farmer chamber. For given conditions, we have calculated dose with these algorithms and compared them with measured doses. In AAA the calculated doses (dose/MU) were agreed to measured doses within ${\pm}1%$ in flat and convex surface and were under estimated with -1.9% maximum in concave surface. In PBC the calculated doses were over estimated with +1.7% and +4.1% respectively in flat and convex surface and the differences were from -3.1% to +2.1% in concave surface. In comparison of criteria from AAPM and IAEA reports, and statistical analysis for these results, it is found that the AAA's results are in good agreement with measured values and the M-Batho's results are generally good agreed with measured values among PBC algorithms.

  • PDF

Accuracy Evaluation of Tumor Therapy during Respiratory Gated Radiation Therapy (호흡동조방사선 치료 시 종양 치료의 정확도 평가)

  • Jang, Eun-Sung;Kang, Soo-Man;Lee, Chol-Soo;Kang, Se-Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.113-122
    • /
    • 2010
  • Purpose: To evaluate the accuracy of a target position at static and dynamic state by using Dynamic phantom for the difference between tumor's actual movement during respiratory gated radiation therapy and skin movement measured by RPM (Real-time Position Management). Materials and Methods: It self-produced Dynamic phantom that moves two-dimensionally to measure a tumor moved by breath. After putting marker block on dynamic phantom, it analyzed the amplitude and status change depending on respiratory time setup in advance by using RPM. It places marker block on dynamic phantom based on this result, inserts Gafchromic EBT film into the target, and investigates 5 Gy respectively at static and dynamic state. And it scanned investigated Gafchromic EBT film and analyzed dose distribution by using automatic calculation. Results: As a result of an analysis of Gafchromic EBT film's radiation amount at static and dynamic state, it could be known that dose distribution involving 90% is distributed within margin of error of 3 mm. Conclusion: As a result of an analysis of dose distribution's change depending on patient's respiratory cycle during respiratory gated radiation therapy, it is expected that the treatment would be possible within recommended margin of error at ICRP 60.

  • PDF

Commissioning Experience of Tri-Cobalt-60 MRI-guided Radiation Therapy System (자기공명영상유도 Co-60 기반 방사선치료기기의 커미셔닝 경험)

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.193-200
    • /
    • 2015
  • The aim of this study is to present commissioning results of the ViewRay system. We verified safety functions of the ViewRay system. For imaging system, we acquired signal to noise ratio (SNR) and image uniformity. In addition, we checked spatial integrity of the image. Couch movement accuracy and coincidence of isocenters (radiation therapy system, imaging system and virtual isocneter) was verified. Accuracy of MLC positioing was checked. We performed reference dosimetry according to American Association of Physicists in Medicine (AAPM) Task Group 51 (TG-51) in water phantom for head 1 and 3. The deviations between measurements and calculation of percent depth dose (PDD) and output factor were evaluated. Finally, we performed gamma evaluations with a total of 8 IMRT plans as an end-to-end (E2E) test of the system. Every safety system of ViewRay operated properly. The values of SNR and Uniformity met the tolerance level. Every point within 10 cm and 17.5 cm radii about the isocenter showed deviations less than 1 mm and 2 mm, respectively. The average couch movement errors in transverse (x), longitudinal (y) and vertical (z) directions were 0.2 mm, 0.1 mm and 0.2 mm, respectively. The deviations between radiation isocenter and virtual isocenter in x, y and z directions were 0 mm, 0 mm and 0.3 mm, respectively. Those between virtual isocenter and imaging isocenter were 0.6 mm, 0.5 mm and 0.2 mm, respectively. The average MLC positioning errors were less than 0.6 mm. The deviations of output, PDDs between mesured vs. BJR supplement 25, PDDs between measured and calculated and output factors of each head were less than 0.5%, 1%, 1% and 2%, respectively. For E2E test, average gamma passing rate with 3%/3 mm criterion was $99.9%{\pm}0.1%$.

Evaluation of the Usefulness of MapPHAN for the Verification of Volumetric Modulated Arc Therapy Planning (용적세기조절회전치료 치료계획 확인에 사용되는 MapPHAN의 유용성 평가)

  • Woo, Heon;Park, Jang Pil;Min, Jae Soon;Lee, Jae Hee;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.115-121
    • /
    • 2013
  • Purpose: Latest linear accelerator and the introduction of new measurement equipment to the agency that the introduction of this equipment in the future, by analyzing the process of confirming the usefulness of the preparation process for applying it in the clinical causes some problems, should be helpful. Materials and Methods: All measurements TrueBEAM STX (Varian, USA) was used, and a file specific to each energy, irradiation conditions, the dose distribution was calculated using a computerized treatment planning equipment (Eclipse ver 10.0.39, Varian, USA). Measuring performance and cause errors in MapCHECK 2 were analyzed and measured against. In order to verify the performance of the MapCHECK 2, 6X, 6X-FFF, 10X, 10X-FFF, 15X field size $10{\times}10$ cm, gantry $0^{\circ}$, $180^{\circ}$ direction was measured by the energy. IGRT couch of the CT values affect the measurements in order to confirm, CT number values : -800 (Carbon) & -950 (COUCH in the air), -100 & 6X-950 in the state for FFF, 15X of the energy field sizes $10{\times}10$, gantry $180^{\circ}$, $135^{\circ}$, $275^{\circ}$ directionwas measured at, MapPHAN allocated to confirm the value of HU were compared, using the treatment planning computer for, Measurement error problem by the sharp edges MapPHAN Learn gantry direction MapPHAN of dependence was measured in three ways. GANTRY $90^{\circ}$, $270^{\circ}$ in the direction of the vertically erected settings 6X-FFF, 15X respectively, and Setting the state established as a horizontal field sizes $10{\times}10$, $90^{\circ}$, $45^{\circ}$, $315^{\circ}$, $270^{\circ}$ of in the direction of the energy-6X-FFF, 15X, respectively, were measured. Without intensity modulated beam of the third open arc were investigated. Results: Of basic performance MapCHECK confirm the attenuation measured by Couch, measured from the measured HU values that are assigned to the MAP-PHAN, check for calculation accuracy for the angled edge of the MapPHAN all come in a range of valid measurement errors do not affect the could see. three ways for the Gantry direction dependence, the first of the meter built into the value of the Gantry $270^{\circ}$ (relative $0^{\circ}$), $90^{\circ}$ (relative $180^{\circ}$), 6X-FFF, 15X from each -1.51, 0.83% and -0.63, -0.22% was not affected by the AP/PA direction represented. Setting the meter horizontally Gantry $90^{\circ}$, $270^{\circ}$ from the couch, Energy 6X-FFF 4.37, 2.84%, 15X, -9.63, -13.32% the difference. By-side direction measurements MapPHAN in value is not within the valid range can not, because that could be confirmed as gamma pass rate 3% of the value is greater than the value shown. You can check the Open Arc 6X-FFF, 15X energy, field size $10{\times}10$ cm $360^{\circ}$ rotation of the dose distribution in the state to look at nearly 90% pass rate to emerge. Conclusion: Based on the above results, the MapPHAN gantry direction dependence by side in the direction of the beam relative dose distribution suitable for measuring the gamma value, but accurate measurement of the absolute dose can not be considered is. this paper, a more accurate treatment plan in order to confirm, Reduce the tolerance for VMAT, such as lateral rotation investigation in order to measure accurate absolute isodose using a combination of IMF (Isocentric Mounting Fixture) MapCHEK 2, will be able to minimize the impact due to the angular dependence.

  • PDF