• Title/Summary/Keyword: Dose build up

Search Result 61, Processing Time 0.021 seconds

The study on dose variation due to exchange of Upper and Lower jaw in the linear accelerator (선형가속기에서 상위조리개와 하위조리개의 교환에 의한 선량 변화의 고찰)

  • Lim CK.;Kim HN.;Song KW.
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.6-10
    • /
    • 1999
  • The field size can be beam output, therefore MonitorUnit can be varied due to field size dependence The purpose of this study is to evaluate and compare the dose variation according to exchange of collimator The measurements were perfomed with Wellhofer dosimetry system(water phantom. ion chamber. electrometer. system controller. build up cap. etc)and two types of linear accerlerator (Mevatron KD, MevatronMX) Scatter can be affected to field size dependence and scatter correction is separated into collimator and phantom components, scatter components can affect by exchanging of collimator Measurements of collimator scatter factor(Sc) was done in air with build up cap. 1)Square field (5cm2 to 40cm2) was measured 2)and then keeping the upper jaw constant at loom and varing lower jaw from 5cm to 40cm, 3)keeping the lower jaw constant at 10cm and varing upper jaw from 5cm to 40cm Measurements of total scatter factor(Scp) was done in water at Dmax as the procedure of collimator scatter factor measurements in water Dmax The total scatter factors were obtained to the following equation(Sp=Scp/Sc) The measured data is normalized to the data of reference field size($10{\times}10$), rectangular field is inverted to equivalent field to compare three field size data As the collimator setting is varied, the output was changed In conclusion, the error was obtained small but it must be eliminated if we intend to reach the common stated goal of $5\%$ overall uncertainty in dose determination

  • PDF

Buildup Characteristics of Radiophotoluminescent Glass Dosimeters with Exposure Time of X-ray (엑스선의 조사시간에 따른 형광유리선량계의 빌드업 특성)

  • Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.256-263
    • /
    • 2017
  • By using the buildup characteristics of the radiophotoluminescence glass dosimeter(RPLGD), it is aimed to help the measurement of the accurate dose by measuring the radiation dose according to the time of the glass element. Five glass elements were arranged on the table and the source to image receptor distance(SID) was set to 100 cm for the build-up radiation dose measurement of the fluorescent glass dosimeter glass element(GD-352M). Radiation doses and saturation rates were measured over time according to irradiation time, with the tube voltage (30, 60, 90 kVp) and tube current (50, 100 mAs) Repeatability test was repeated ten times to measure the coefficient of variation. The radiation dose increased from 0.182 mGy to 12.902 mGy and the saturation rate increased from 58.3% with increasing exposure condition and time. The coefficient of variation of the glass elements of the fluorescent glass dosimeter was ranged from 0.2 to 0.77 according to the X - ray exposure conditions. X - ray exposure showed that the radiation dose and saturation rate were increased with buildup characteristics, and degeneration of glass elements was not observed. The reproducibility of the variation coefficient of the radiation generator was included within the error range and the reproducibility of the radiation dose was excellent.

Contamination of an Alcyon Co-60 Gamma rays by Electrons (Alcyon Co-60 감마선의 전자오염)

  • Yoo Meong-Jin;Kim Dong-Won;Kim Chul-Soo;Chung Woon-Hyuk
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.109-116
    • /
    • 1988
  • The Alcyon Co-60 gamma rays was studied for electron contamination. The surface dose, attributable almost entirely to contamination electrons, has a linear dependence on field width for square fields and an inverse square dependence on distance from the bottom of the fixed head assembly Build-up and surface dose measurements were taken with and without an acrylic blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the acrylic tray. The results are discussed in relation to skin sparing effect for radiation therapy Patients. And to achieve the maximum skin sparing effect, the selection of the optimum SSD and TSD is needed.

  • PDF

Reduction of Electron Contamination in Photon Beam by electron Filter in 6MV Linear Accelerator (6MV 선형가속기에서 Al/Cu에 관한 여과판 사용시 전자오염 감소에 관한 연구)

  • Lee, Cheol-Su
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.41-54
    • /
    • 1996
  • The secondary electrons developed by interaction between primary beam and a tray mounted for blocks in Megavoltage irradiation result in excess soft radiation dose to the surface layer. To reduce this electron contamination, electron filters have been used to be attached under a tray. Various filters with Cu and Al plates in six different thickness and Cu/Al combined plates in 3 different thickness were tested to measure the reduction rate of secondary electron contamination to the surface layer. The measurement to find optimal filter was performed on 6MV linear accelerator in $10 cm{\times}10 cm$ field size and fixed 78.5cm source to measurement points distance from surface to maximum build up point in 2mm intervals. The result was analyzed as the ratio of measured doses with using filters, to standard doses of measured open beam. The result of this study was fellowing : 1. The contaminated low energy radiation were mainly produced by blocking tray. 2. The surface absorbed dose was slowly increased by increasing irradiation field size but rapidly increased at field size above $15cm{\times}15cm$. 3. Al plate upto 2.5mm thickness used as a filter was found to be inadequate due to the failure of reduction of the surface absorbed dose below doses of the under surface upto the maximal build up. Cu 0.5mm plate and Cu 0.28mm/A1 1.5mm compound plate were found to be optimal filters. 4. By using these 2 filters, the absorbed dose to the surface were effectively reduced $5.5\%$ in field size $4cm{\times}4cm,\;11.3\%$ in field size $10cm{\times}10cm,\;22.3\%$ in field size $25cm{\times}25cm$. 5. In field size $10cm{\times}10cm$, the absorbed dose to the surface of irradiation was reduced by setting TSD 20cm at least,. but effective and enough dose reduction could be achieved by setting TSD 30cm as 2 optimal filters used. 6. More surface dose absorbed at TSD less than 7.4cm with a tray and filters together indicated that soft radiation was also developed by filters. 7. The variation of PDD by the different size of irradiation field was minimal as 2 optimal filters used. There was also not different in variation of PDD according to using any of two different filters. 8. PDD was not effected either by various TSD or by using the different filter among two.

  • PDF

Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia

  • Abdullahi, Shittu;Ismail, Aznan Fazli;Samat, Supian
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.325-336
    • /
    • 2019
  • The activity concentrations of $^{226}Ra$, $^{232}Th$, and $^{40}K$ from 102 building materials samples were determined using a high-purity germanium (HPGe) detector. The activity concentrations were evaluated for possible radiological hazards to the human health. The excess lifetime cancer risks (ELCR) were also estimated, and the average values were recorded as $0.42{\pm}0.24{\times}10^{-3}$, $3.22{\pm}1.83{\times}10^{-3}$, and $3.65{\pm}1.85{\times}10^{-3}$ for outdoor, indoor, and total ELCR respectively. The activity concentrations were further subjected to RESRAD-BUILD computer code to evaluate the long-term radiation exposure to a dweller. The indoor doses were assessed from zero up to 70 years. The simulation results were $92{\pm}59$, $689{\pm}566$, and $782{\pm}569{\mu}Sv\;y^{-1}$ for indoor external, internal, and total effective dose equivalent (TEDE) respectively. The results reported were all below the recommended maximum values. Therefore, the radiological hazards attributed to building materials under study are negligible.

Effect of skin dose by materials located in treatment field (방사선 치료 시 조사야 내에 위치할 수 있는 이물질이 체표선량에 미치는 영향)

  • Hong, Chae-Seon;Kim, Kyung-Tae;Ju, Sang-Gyu;Kim, Jong-Sik;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • Purpose : In radiotherapy, various materials are used to located in treatment field unintentionally. It increases the dose delivered to the skin by interactions of the X-ray within the materials and occurs unwanted skin reaction.(due to the dose build-up effect) This aim of the this study is to measure the increase in skin dose when 13 materials are located in treatment field. Methods : Photon beam measurements were made using an plane-parallel chamber (Markus, PTW-Freiburg) in a polystyrene phantom. skin dose were measured using various overlaying 13 materials. a fixed geometry of a $10{\times}10cm$ field, a SSD=100cm and photon energy 4MV on Varian CLINAC 600C accelerator were used for all measurements. Results : There is an increase in skin dose for all materials($16.4{\sim}160.1\%$). As a percentage of maximum dose, the lowest skin dose were measured for the underwear with silk($43.2\%$) and the highest were measured for the 100m1 fluid-bag($96.6\%$) Conclusion : There is a significant increase in skin dose with 13 materials in the treatment field. a significant increase in skin dose can occur which could produce unwanted skin reaction. considerations for placement of 13 materials to be outside the treatment field whenever possible should be used to keep skin dose to a minimum level.

  • PDF

Radionuclide-Specific Exposure Pathway Analysis of Kori Unit 1 Containment Building Surface

  • Byon, Jihyang;Park, Sangjune;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.347-354
    • /
    • 2020
  • Site characterization for decommissioning Kori Unit 1 is ongoing in South Korea after 40 years of successful operation. Kori Unit 1's containment building is assumed to be mostly radioactively contaminated, and therefore radiation exposure management and detailed contamination investigation are required for decommissioning and dismantling it safely. In this study, site-specific Derived Concentration Guideline Levels (DCGLs) were derived using the residual radioactivity risk evaluation tool, RESRAD-BUILD code. A conceptual model of containment building for Kori Unit 1 was set up and limited occupational worker building inspection scenario was applied. Depending on the source location, the maximum contribution source and exposure pathway of each radionuclide were analyzed. The contribution of radionuclides to dose and exposure pathways, by source location, is expected to serve as basic data in the assessment criteria of survey areas and classification of impact areas during further decommissioning and decontamination of sites.

The Measurement of Dose Distribution in the Presence of Air Cavity and Underdosing Effect Result from Lack of Electronic Equilibrium (조사면내 공동의 존재에 따른 선량분포의 변화측정)

  • Jo, Jeong-Hui;Bang, Dong-Wan;Park, Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.75-81
    • /
    • 1996
  • When high energy photon beam is incident upon an air cavity interface the effect of ionization build-up observed . This phenomenon is resulting from the surface layers of the lesions are significant deficiency of electrons reaching the layers because of the replacement, of solid scattering material by the air cavity, that is lack of electronic equilibrium. Measurement have been made in an acrylic phantom with a parallel plate chamber and high energy photon beams, CO-60, 4MV, 6MV and 10MV X-rays have been investigated. The result of our study show that a significant effect was measured and was determined to be very dependent on field size, air cavity dimension and photon energy. The reductions were much larger for 10MV beam, underdosage at the interface was 12, 12.2, 16.9 and $20.6\%$ for the CO-60, 4MV, 6MV and 10MV, respectively. It was found that this non-equilibrium effect at the interface is more severe for the higher energy beams than that of lower energy beams and the larger cavity dimensions the larger beam reductions occur. This problem is of clinical concern when lesions such as carcinoma beyond air cavities are irradiated, such as larynx, glottic and the patients with maxillectomy and ethmoidectomy and so forth.

  • PDF

High Energy Photon Dosimetry by ESR Spectroscopy in Radiotherapy (ESR Spectroscopy에 의한 치료용 고에너지 광자선의 선량측정)

  • Chu, Sung-Sil
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • The finding of long lived free radicals produced by ionizing radiation in organic crystals and the quantification of this effect by electron spin resonance(ESR) spactroscopy has proven excellent dosimetric applicability. The tissue equivalent alanine dosimeter also appear appropriate for radiation therapy level dosimetry. The dose measurement was performed in a Rando phantom using high energy photons as produced by high energy medical linear accelerator and cobalt-60 teletherapy unit. The absorbed dose range of the ESR/alanine dosimetry system could be extended down to 0.1 Gy. The response of the alanine dosimeters was determined for photons at different therapeutic dose levels from less than 0.1 Gy to 100 Gy and the depth dose measurements were carried out for photon energies of 1.25MeV, 6 and 10 MV with alanine dosimeters in Rando phantom. Comparisons between ESR/alanine in a Rando phantom and ion chamber in a water phantom were made performing depth dose measurements to examine the agreement of both methods under field conditions.

  • PDF

Variation Analysis of Distance and Exposure Dose in Radiation Control Area and Monitoring Area according to the Thickness of Radiation Protection Tool Using the Calculation Model: Non-Destructive Test Field (계산 모델을 활용한 방사선방어용 도구 두께에 따른 방사선관리구역 및 감시구역의 거리 및 피폭선량 변화 분석 : 방사선투과검사 분야 중심으로)

  • Gwon, Da Yeong;Park, Chan-hee;Kim, Hye Jin;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.279-287
    • /
    • 2020
  • Recently, interest in radiation protection is increasing because of the occurrence of accidents related to exposure dose. So, the nuclear safety act provides to install the shields to avoid exceeding the dose limit. In particular, when the worker conducts the non-destructive testing (NDT) without the fixed shielding structure, we should monitor the access to the workplace based on a constant dose rate. However, when we apply for permits for NDT work in these work environments, the consideration factors to the estimation of the distance and exposure dose are not legally specified. Therefore, we developed the excel model that automatically calculates the distance, exposure dose, and cost if we input the factors. We applied the assumption data to this model. As a result of the application, the distance change rate was low when the thickness of the lead blanket and collimator is above 25 mm, 21.5 mm, respectively. However, we didn't consider the scattering and build-up factor. And, we assumed the shape of the lead blanket and collimator. Therefore, if we make up for these limitations and use the actual data, we expect that we can build a database on the distance and exposure dose.