• 제목/요약/키워드: Dose Model

검색결과 1,799건 처리시간 0.025초

아크 치료를 위한 고속 근사선량모델 개발 (Fast Approximate Dose Model Used in Arc Therapy)

  • 서태석;서덕영
    • Journal of Radiation Protection and Research
    • /
    • 제20권4호
    • /
    • pp.227-236
    • /
    • 1995
  • 선량데이타와 정확한 3차원 선량모델을 이용하여 여러 아크에 대한 선량분포를 조사하였다. 정확한 선량모델에 의해 계산된 선량 값은 판단한 실험식으로 표현이 가능했으며 이는 선량 최적화 과정에서 반복적으로 선량 값을 계산하는데 매우 유용하였다. 360도 아크와 부분 아크에 대한 선량 값을 빠른 속도로 계산하기 위하며 실험적으로 구해진 실린더형 선량모델을 개발하였다. 200개 위치의 정확한 선량 값을 비선형식으로 피팅하여 7개의 변수를 포함하는 실험식을 개발하였다. 결과적으로 이 모델을 이용하는 경우 한 아크에 대한 선량 계산시 400개의 위치를 계산하는데 PC-486으로 1초 이내에서 계산이 가능하였다. 결론적으로 개발된 고속선량모델은 정확한 선량모델에 의한 선량 값과 유사한 값을 제공함으로써 계간속도가 늦은 일반 3차원 선량모델을 대치할 수 있을 것으로 사려된다.

  • PDF

Multi-layers grid environment modeling for nuclear facilities: A virtual simulation-based exploration of dose assessment and dose optimization

  • Jia, Ming;Li, Mengkun;Mao, Ting;Yang, Ming
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.956-963
    • /
    • 2020
  • Dose optimization for Radioactive Occupational Personal (ROP) is an important subject in nuclear and radiation safety field. The geometric environment of a nuclear facility is complex and the work area is radioactive, so traditional navigation model and radioactive data field cannot form an effective environment model for dose assessment and dose optimization. The environment model directly affects dose assessment and indirectly affects dose optimization, this is an urgent problem needed to be solved. Therefore, this paper focuses on an environment model used for Dose Assessment and Dose Optimization (DA&DO). We designed a multi-layer radiation field coupling modeling method, and then explored the influence of the environment model to DA&DO by virtual simulation. Then, a simulation test is done, the multi-layer radiation field coupling model for nuclear facilities is demonstrated to be effective for dose assessment and dose optimization through the experiments and analysis.

Insights from an OKMC simulation of dose rate effects on the irradiated microstructure of RPV model alloys

  • Jianyang Li;Chonghong Zhang;Ignacio Martin-Bragado;Yitao Yang;Tieshan Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.958-967
    • /
    • 2023
  • This work studies the defect features in a dilute FeMnNi alloy by an Object Kinetic Monte Carlo (OKMC) model based on the "grey-alloy" method. The dose rate effect is studied at 573 K in a wide range of dose rates from 10-8 to 10-4 displacement per atom (dpa)/s and demonstrates that the density of defect clusters rises while the average size of defect clusters decreases with increasing dose rate. However, the dose-rate effect decreases with increasing irradiation dose. The model considered two realistic mechanisms for producing <100>-type self-interstitial atom (SIA) loops and gave reasonable production ratios compared with experimental results. Our simulation shows that the proportion of <100>-type SIA loops could change obviously with the dose rate, influencing hardening prediction for various dose rates irradiation. We also investigated ways to compensate for the dose rate effect. The simulation results verified that about a 100 K temperature shift at a high dose rate of 1×10-4 dpa/s could produce similar irradiation microstructures to a lower dose rate of 1×10-7 dpa/s irradiation, including matrix defects and deduced solute migration events. The work brings new insight into the OKMC modeling and the dose rate effect of the Fe-based alloys.

Validation of a Model for Estimating Individual External Dose Based on Ambient Dose Equivalent and Life Patterns

  • Sato, Rina;Yoshimura, Kazuya;Sanada, Yukihisa;Sato, Tetsuro
    • Journal of Radiation Protection and Research
    • /
    • 제47권2호
    • /
    • pp.77-85
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, a model was developed to estimate the external exposure doses for residents who were expected to return to their homes after evacuation orders were lifted. However, the model's accuracy and uncertainties in parameters used to estimate external doses have not been evaluated. Materials and Methods: The model estimates effective doses based on the integrated ambient dose equivalent (H*(10)) and life patterns, considering a dose reduction factor to estimate the indoor H*(10) and a conversion factor from H*(10) to the effective dose. Because personal dose equivalent (Hp(10)) has been reported to agree well with the effective dose after the FDNPS accident, this study validates the model's accuracy by comparing the estimated effective doses with Hp(10). The Hp(10) and life pattern data were collected for 36 adult participants who lived or worked near the FDNPS in 2019. Results and Discussion: The estimated effective doses correlated significantly with Hp(10); however, the estimated effective doses were lower than Hp(10) for indoor sites. A comparison with the measured indoor H*(10) showed that the estimated indoor H*(10) was not underestimated. However, the Hp(10) to H*(10) ratio indoors, which corresponds to the practical conversion factor from H*(10) to the effective dose, was significantly larger than the same ratio outdoors, meaning that the conversion factor of 0.6 is not appropriate for indoors due to the changes in irradiation geometry and gamma spectra. This could have led to a lower effective dose than Hp(10). Conclusion: The estimated effective doses correlated significantly with Hp(10), demonstrating the model's applicability for effective dose estimation. However, the lower value of the effective dose indoors could be because the conversion factor did not reflect the actual environment.

Development of PC-based Radiation Therapy Planning System

  • Suh, Tae-Suk;P task group, R-T
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.121-122
    • /
    • 2002
  • The main principle of radiation therapy is to deliver optimum dose to tumor to increase tumor cure probability while minimizing dose to critical normal structure to reduce complications. RTP system is required for proper dose plan in radiation therapy treatment. The main goal of this research is to develop dose model for photon, electron, and brachytherapy, and to display dose distribution on patient images with optimum process. The main items developed in this research includes: (l) user requirements and quality control; analysis of user requirement in RTP, networking between RTP and relevant equipment, quality control using phantom for clinical application (2) dose model in RTP; photon, electron, brachytherapy, modifying dose model (3) image processing and 3D visualization; 2D image processing, auto contouring, image reconstruction, 3D visualization (4) object modeling and graphic user interface; development of total software structure, step-by-step planning procedure, window design and user-interface. Our final product show strong capability for routine and advance RTP planning.

  • PDF

미생물 위해성 평가의 용량-반응 모델에 대한 고찰 (A Review of Dose-response Models in Microbial Risk Assessment)

  • 최은영;박경진
    • 한국식품위생안전성학회지
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2004
  • 미생물 위해성 평가의 용량-반응 모델은 생물학적 모델과 경험적 모델로 나눌 수 있다. 생물학적 모델은 미생물의 분포형태, 미생물에 대한 숙주의 감수성, 감염을 일으킬 수 있는 미생물 수에 대한 가정을 바탕으로 성립된 모델로서, 대표적으로 Exponential model과 $\beta$-Poisson model이 있다. 경험적 모델은 주로 화학물질의 독성을 나타내는데 이용되어 온 모델로, Weibull-Gamma model등이 있다. 여러 용량-반응 모델 중에서 실험 데이터에 적합한 모델을 걱정하는 데에는 deviance function(Y)을 이용하며, 현재 일부 식중독균에 대해서는 사람과 실험동물에서의 용량-반응 모델이 연구되어 있다.

Dosimetry Check™를 이용한 MVCT 선량계산 모델 구축에 관한 연구 (A Study on the Construction of MVCT Dose Calculation Model by Using Dosimetry Check™)

  • 엄기천;김창환;전수동;백금문
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권6호
    • /
    • pp.431-441
    • /
    • 2020
  • The purpose of this study was to construct a model of MVCT(Megavoltage Computed Tomography) dose calculation by using Dosimetry Check™, a program that radiation treatment dose verification, and establish a protocol that can be accumulated to the radiation treatment dose distribution. We acquired sinogram of MVCT after air scan in Fine, Normal, Coarse mode. Dosimetry Check™(DC) program can analyze only DICOM(Digital Imaging Communications in Medicine) format, however acquired sinogram is dat format. Thus, we made MVCT RC-DICOM format by using acquired sinogram. In addition, we made MVCT RP-DICOM by using principle of generating MLC(Multi-leaf Collimator) control points at half location of pitch in treatment RP-DICOM. The MVCT imaging dose in fine mode was measured by using ionization chamber, and normalized to the MVCT dose calculation model, the MVCT imaging dose of Normal, Coarse mode was calculated by using DC program. As a results, 2.08 cGy was measured by using ionization chamber in Fine mode and normalized based on the measured dose in DC program. After normalization, the result of MVCT dose calculation in Normal, Coarse mode, each mode was calculated 0.957, 0.621 cGy. Finally, the dose resulting from the process for acquisition of MVCT can be accumulated to the treatment dose distribution for dose evaluation. It is believed that this could be contribute clinically to a more realistic dose evaluation. From now on, it is considered that it will be able to provide more accurate and realistic dose information in radiation therapy planning evaluation by using Tomotherapy.

음용수를 통한 라돈의 반복섭취시 동적 약리학모델을 활용한 체내거동 평가 (The Internal Dose Assessment of Ingested Radon using a PBPK Model for Repeated Oral Exposures)

  • 유동한;이창우
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권2호
    • /
    • pp.43-50
    • /
    • 2001
  • A daily newspaper in Korea addressed an controversial issue recently that the concentration of radon measured from the groundwater in Taejon was found out a relatively high level. The cancer risk arising from ingestion of such radon should be derived from calculation of the dose absorbed by the tissues at risk. The study performed by the National Research Council in United States confirmed that the use of a PBPK model for the ingested radon could provide the useful information regarding the distribution of radon among the organs of the body. This study presents an approach for the internal dose assessment of ingested radon for this case. At first, the study develops a PBPK model for ingested radon. However, the important issue is how to simulate a more realistic situation using the model associated with repeated oral doses rather than a single oral dose. The simulations are performed for repeated oral exposures per 8-hour interval using the PBPK model for a male adult. The concentration and cumulative value of radon concentration are calculated and analyzed for lung tissue and adipose group, respectively. The results could be used for the realistic prediction of the internal dose of radon in the human body for repeated oral exposures.

  • PDF

Estimated Risk of Radiation Induced Contra Lateral Breast Cancer Following Chest Wall Irradiation by Conformal Wedge Field and Forward Intensity Modulated Radiotherapy Technique for Post-Mastectomy Breast Cancer Patients

  • Athiyaman, Hemalatha;M, Athiyaman;Chougule, Arun;Kumar, HS
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권12호
    • /
    • pp.5107-5111
    • /
    • 2016
  • Background: Epidemiological studies have indicated an increasing incidence of radiation induced secondary cancer (SC) in breast cancer patients after radiotherapy (RT), most commonly in the contra-lateral breast (CLB). The present study was conducted to estimate the SC risk in the CLB following 3D conformal radiotherapy techniques (3DCRT) including wedge field and forward intensity modulated radiotherapy (fIMRT) based on the organ equivalent dose (OED). Material and Methods: RT plans treating the chest wall with conformal wedge field and fIMRT plans were created for 30 breast cancer patients. The risks of radiation induced cancer were estimated for the CLB using dose-response models: a linear model, a linear-plateau model and a bell-shaped model with full dose response accounting for fractionated RT on the basis of OED. Results: The plans were found to be ranked quite differently according to the choice of model; calculations based on a linear dose response model fIMRT predict statistically significant lower risk compared to the enhanced dynamic wedge (EDW) technique (p-0.0089) and a non-significant difference between fIMRT and physical wedge (PW) techniques (p-0.054). The widely used plateau dose response model based estimation showed significantly lower SC risk associated with fIMRT technique compared to both wedge field techniques (fIMRT vs EDW p-0.013, fIMRT vs PW p-0.04). The full dose response model showed a non-significant difference between all three techniques in the view of second CLB cancer. Finally the bell shaped model predicted interestingly that PW is associated with significantly higher risk compared to both fIMRT and EDW techniques (fIMRT vs PW p-0.0003, EDW vs PW p-0.0032). Conclusion: In conclusion, the SC risk estimations of the CLB revealed that there is a clear relation between risk associated with wedge field and fIMRT technique depending on the choice of model selected for risk comparison.

Space Radiation Shielding Calculation by Approximate Model for LEO Satellites

  • Shin Myung-Won;Kim Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.1-11
    • /
    • 2004
  • Two approximate methods for a cosmic radiation shielding calculation in low earth orbits were developed and assessed. Those are a sectoring method and a chord-length distribution method. In order to simulate a change in cosmic radiation environments along the satellite mission trajectory, IGRF model and AP(E)-8 model were used. When the approximate methods were applied, the geometrical model of satellite structure was approximated as one-dimensional slabs, and a pre-calculated dose-depth conversion function was introduced to simplify the dose calculation process. Verification was performed with mission data of KITSAT-1 and the calculated results were also compared with detailed 3-dimensional calculation results using Monte Carlo calculation. Dose results from the approximate methods were conservatively higher than Monte Carlo results, but were lower than experimental data in total dose rate. Differences between calculation and experimental data seem to come from the AP-8 model, for which it is reported that fluxes of proton are underestimated. We confirmed that the developed approximate method can be applied to commercial satellite shielding calculations. It is also found that commercial products of semi-conductors can be damaged due to total ionizing dose under LEO radiation environment. An intensive shielding analysis should be taken into account when commercial devices are used.