• Title/Summary/Keyword: Dosage forms

Search Result 160, Processing Time 0.028 seconds

Formulation of Liquid Oral Preparations Containing Itraconazole (이트라코나졸의 경구용 액제 처방화)

  • Jung, Ki-Seop;Hong, Ji-Woong;Choi, Ki-Song;Chi, Sang-Cheol;Park, Eun-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.299-303
    • /
    • 2002
  • The oral bioavailability of itraconazole is variable and low in fasting state. This is mainly due to the low solubility of this drug. Bioavailability can be improved by changing the formulation and it is general that the liquid preparations show greater bioavailability than the solid dosage forms such as tablets and capsules do. Benzyl alcohol-water binary mixture showed the excellent solubilizing capacity for itraconazole but the release of the drug from the preparation needs to be enhanced. In this study, various nonionic surfactants and hydrophilic polymers, poloxamers, were screened to investigate their effects on the releasε of itraconazole from the liquid preparations. Poloxamer 407 showed the most enhancing effect on the drug release and the release rate was proportional to thε amount of poloxamer 407 added. A liquid preparation of itraconazole, consisting of benzyl alcohol/water/poloxamer 407 ternary solvent system, releasεd more than 80% of the total drug amount at 5 min and showεd the possibility of a new formulation development.

Physicochemical property and skin damage of physical mixture of valsartan and polysorbate 80 (Valsartan 및 polysorbate 80의 혼합물의 물리화학적 성질 및 피부 손상 연구)

  • Choi, Han-Gon;Sung, Jun-Ho;Oh, Dong-Hoon;Li, Dong-Xun;Cho, Kwan-Hyung;Woo, Jong-Soo;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.2
    • /
    • pp.107-110
    • /
    • 2009
  • To investigate the interaction and skin damage of valsartan with polysorbate 80, the physical mixture of valsartan and polysorbate 80 was prepared and then its adhesion, dispersibility, DSC and skin damage in nude rats were investigated. The physical mixture of valsartan and polysorbate 80 appeared as an aggregated form and could hardly be dispersed in water. The DSC curve showed that physical mixture disappeared the intrinsic peaks of valsartan and polysorbate 80 at about $115^{\circ}C$ and $170^{\circ}C$, respectively. It appeared a new relatively broad endothermic peak at about $150^{\circ}C$, suggesting that valsartan was chemically interacted with polysorbate 80. Furthermore, it induced the severe skin irritation and damage in nude mice. Thus, polysorbate 80 must not be used in the preparation of valsartan-loaded pharmaceutical dosage forms.

Preparation of Highly Water Soluble Tacrolimus Derivatives: Poly(Ethylene Glycol) Esters as Potential Prod rugs

  • Chung, Yong-Seog;Cho, Hoon
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.878-883
    • /
    • 2004
  • Tacrolimus (FK506), which is isolated from Streptomyces tsukubaensis, is a new potent immu-nosuppressant. Because of poor solubility in water, the conventional intravenous dosage forms of tacrolimus contain surfactants such as cremophor EL (BASF Wyandotte Co.) or hydroge-nated polyoxy 60 castor oil (HCO-60) which may cause adverse effects. This study relates to a polymer-tacrolimus conjugate, which can be dissolved in water, formed by chemically binding the sparingly soluble drug, tacrolimus, with the water soluble polymer, methoxypoly(ethylene glycol) (mPEG). Water soluble tacrolimus-mPEG conjugates have been synthesized and shown to be function in vitro as prodrugs. These conjugates are in the form of an ester wherein the 24-, 32- or 24,32-positions are esterified. The desired 24-, 32- or 24,32-esterified com-pounds were obtained by initially acylating of tacrolimus with iodoacetic acid at the 24-,32-, or 24,32-positions and then reacting the resulting acylated tacrolimus with a mPEG in the pres-ence of a base such as sodium bicarbonate. These conjugates were converted again into tac-rolimus by the action of enzymes in human liver homogenate, and the half-lives of the conjugates are approximately 10 min in the homogenate, indicating that the esterified tacroli-mus derivatives may be practically applicable as a prod rug for the immunosuppressant.

In vitro cytotoxicity and in vivo acute toxicity of selected polysaccharide hydrogels as pharmaceutical excipients

  • Kulkarni GT;Gowthanarajan K;Raghu C;Ashok G;Vijayan P
    • Advances in Traditional Medicine
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2005
  • Polysaccharide hydrogels constitute a structurally diverse class of biological macromolecules with a wide range of physicochemical properties. They also constitute important members of the family of industrial water-soluble polymers. They find application in Pharmacy as binders, disintegrants, suspending, emulsifying and sustaining agents. According to the International Pharmaceutical Excipients Council (IPEC), an excipient must have an established safety profile. Hence, in the present study, in vitro cytotoxicity on Vero and HEp-2 cell lines, and in vivo acute toxicity in rats were carried out to establish the safety of polysaccharide hydrogels from the seeds of Plantago ovata and Ocimum basilicum. The in vitro cytotoxicity was determined by MTT and SRB assays. In the in vivo acute toxicity, the effects of three different doses of hydrogels (100, 200 and 400 mg/kg body weight) on food and water intake, body weight, biochemical and hematological parameters were studied. The results of in vitro did not show any cytotoxicity on both the cell lines used. In the in vivo acute toxicity, the hydrogels did not show any toxic symptoms in all three dose levels. This establishes the safety of the selected hydrogels. Hence, they can be used as excipients in pharmaceutical dosage forms.

Recent Progress in Drug Delivery Systems for Anticancer Agents

  • Kim, Chong-Kook;Lim, Soo-Jeong
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.229-239
    • /
    • 2002
  • Recent progress in understanding the molecular basis of cancer brought out new materials such as oligonucleotides, genes, peptides and proteins as a source of new anticancer agents. Due to their macromolecular properties, however, new strategies of delivery for them are required to achieve their full therapeutic efficacy in clinical setting. Development of improved dosage forms of currently marketed anticancer drugs can also enhance their therapeutic values. Currently developed delivery systems for anticancer agents include colloidal systems (liposomes, emulsions, nanoparticles and micelles), polymer implants and polymer conjugates. These delivery systems have been able to provide enhanced therapeutic activity and reduced toxicity of anticancer agents mainly by altering their pharmacokinetics and biodistribution. Furthermore, the identification of cell-specific receptor/antigens on cancer cells have brought the development of ligand- or antibody-bearing delivery systems which can be targeted to cancer cells by specific binding to receptors or antigens. They have exhibited specific and selective delivery of anticancer agents to cancer. As a consequence of extensive research, clinical development of anticancer agents utilizing various delivery systems is undergoing worldwide. New technologies and multidisciplinary expertise to develop advanced drug delivery systems, applicable to a wide range of anticancer agents, may eventually lead to an effective cancer therapy in the future.

Hepatoprotective Effects of Amorphous and Nnno-Particle Pyeparations of Ursodeoxycholic Acid in CC4-Induced Mice : Effects of Three Types of Fine Grinding Mills (Ursodeoxycholic acid의 무정형 초미립자제제들의 CC4 유도 간손상 생쥐에 대한 보호 효과)

  • 정한영;곽신성;김현일;최우식;이지현;김애라;박태현;정해영;김유정
    • Biomolecules & Therapeutics
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The particle size of medicinal materials is an Important physical property that affects the phar-maceutical behaviors such as dissolution, chemical stability, and bioavailability of solid dosage forms. The size reduction of raw medicinal powder is needed to formulate insoluble drugs or slightly soluble medicines and to improve the pharmaceutical properties such as the solubility, the pharmaceutical mixing, and the dispersion. The objective of the present study is to evaluate physiological activity of amorphous and nano-particle prep-arations of insoluble drug, ursodeoxycholic acid (UDCA), which were made by three types of fine grinding mills. The change of physical properties of ground UDCA was conformed by Mastersiger microplus and X-ray diffraction. We have investigated hepatoprotective effects of the nano-particle preparations of UDCA by plan-etary mill, vibration rod mill and jet mill in $CCI_4$-induced oxidatively injured mouse liver. The results showed that nano-particle preparations of UDCA all decreased reactive oxygen sepecies generation and lipid peroxi-dation in $CCI_4$-induced oxidative stress mice. Among them, nano-particle preparations by vibration rod mill and jet mill showed more significantly hepatoprotective effects compared to intact UDCA and planetary mill-ground UDCA. These results suggest that ground UDCA with vibration rod mill and jet mill shows a high amorphous state and the improved dissolution.

Effects of Morin on the Bioavailability of Doxorubicin for Oral Delivery in Rats

  • Son, Hong-Mook;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • The purpose of this study was to investigate the effects of morin, an antioxidant, on the bioavailability of doxorubicin (DOX) in rats. Thus, DOX was administered intravenously (10 mg/kg) or orally (50 mg/kg) with or without oral morin (0.5, 3 and 10 mg/kg). In the presence of morin, the total area under the plasma concentration-time curve (AUC) of DOX was significantly greater than that of the control. In the presence of 3 and 10 mg/kg of morin, the peak concentration $C_{MAX}$) was significantly higher than that of the control. Consequently, the absolute bioavailability (AB) of DOX in the presence of morin was 3.7-8.3%, which was significantly enhanced compared with those of the control group (2.7%). The relative bioavailability (RB) of DOX was 1.36 to 3.02 times higher than those of the control group. Compared to the intravenous control, the presence of morin increased the AUC of DOX, but was not significantly affected. The enhanced bioavailability of oral DOX by oral morin may be due to the inhibition of both P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A in the intestine and/or liver by morin. This result may suggest that the development of oral DOX combination with morin is feasible, which is more convenient than the i.v. dosage forms. The present study raised the awareness about the potential drug interactions by concomitant use of DOX with morin.

Protein Drug Oral Delivery: The Recent Progress

  • Lee, Hye-J.
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.572-584
    • /
    • 2002
  • Rapid development in molecular biology and recent advancement in recombinant technology increase identification and commercialization of potential protein drugs. Traditional forms of administrations for the peptide and protein drugs often rely on their parenteral injection, since the bioavailability of these therapeutic agents is poor when administered nonparenterally. Tremendous efforts by numerous investigators in the world have been put to improve protein formulations and as a result, a few successful formulations have been developed including sustained-release human growth hormone. For a promising protein delivery technology, efficacy and safety are the first requirement to meet. However, these systems still require periodic injection and increase the incidence of patient compliance. The development of an oral dosage form that improves the absorption of peptide and especially protein drugs is the most desirable formulation but one of the greatest challenges in the pharmaceutical field. The major barriers to developing oral formulations for peptides and proteins are metabolic enzymes and impermeable mucosal tissues in the intestine. Furthermore, chemical and conformational instability of protein drugs is not a small issue in protein pharmaceuticals. Conventional pharmaceutical approaches to address these barriers, which have been successful with traditional organic drug molecules, have not been effective for peptide and protein formulations. It is likely that effective oral formulations for peptides and proteins will remain highly compound specific. A number of innovative oral drug delivery approaches have been recently developed, including the drug entrapment within small vesicles or their passage through the intestinal paracellular pathway. This review provides a summary of the novel approaches currently in progress in the protein oral delivery followed by factors affecting protein oral absorption.

Relative Dose Distribution in the Biological Irradiation Facility at TRIGE Mark-III Reactor

  • Kim, Byung-Sung;Ha, Chung-Woo;Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.277-284
    • /
    • 1975
  • A result of measurement for the relative dose distribution of neutron gamma mixed radiation field in the biological irradiation facility installed at TRIGA Mark-III reactor is described. The relative dose distributions of neutron-gamma mixed radiation field in the biological exposure room have been experimentally determined using a thermoluminescent dosimeter. Presented herein in graphical forms are the experimental results obtained. It as observed that the region commonly having the characteristics of rather homogeneous horizontal and lateral dose distributions is confined to the area bounded by the two planes horizontally parallel to the beam direction with heights of about 40 cm and 130 cm, respectively, at distances beyond 100 cm from the segmentary surface of the aluminum pool liner projected into the the exposure room, while other areas show a steeper gradient in dosage, especially the places adjacent to the segment of the aluminum pool liner and near the inner po${\gamma}$lion of the concrete walls of the exposure room.

  • PDF

Fabrication and Characterization of Gastrodia elata-loaded Particles for Increased Moisture Stability (수분 안정성 향상을 위한 천마 추출물 함유 분말의 제조 및 평가)

  • Jung, Jae Hwan;Jin, Sung Giu
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.241-246
    • /
    • 2020
  • To develop Gastrodia elata (GE)-loaded particles for herbal extract dosage forms, various GE-loaded particles containing dextrin, isomalt, maltodextrin, and silicon dioxide as solidifying carriers in the GE water extract are prepared using the spray drying method. Their physical properties are evaluated using the repose angle, Hausner ratio, Carr's index, weight increase rate at 40℃/75% RH condition, and scanning electron microscopy (SEM). Particles made of dextrin improve the fluidity, compressibility, and water stability. In addition, 2% silicon dioxide increases the fluidity and moisture stability. The best flowability and compressibility of GE-loaded particles are observed with TP, dextrin, and silicon dioxide amounts in the ratio of 6/4/0.2 (34.29 ± 2.86°, 1.48 ± 0.03, and 38.29 ± 2.39%, repose angle, Hausner Ratio, and Carr's index, respectively) and moisture stability with a 2% weight increase rate for 14 h at 40℃/75% RH condition. Therefore, our results suggest that the particles prepared by the spray drying method with dextrin and 2% silicon dioxide can be used as powerful particles to improve the flowability, compressibility, and moisture stability of GE.