DOI QR코드

DOI QR Code

Physicochemical property and skin damage of physical mixture of valsartan and polysorbate 80

Valsartan 및 polysorbate 80의 혼합물의 물리화학적 성질 및 피부 손상 연구

  • Published : 2009.04.27

Abstract

To investigate the interaction and skin damage of valsartan with polysorbate 80, the physical mixture of valsartan and polysorbate 80 was prepared and then its adhesion, dispersibility, DSC and skin damage in nude rats were investigated. The physical mixture of valsartan and polysorbate 80 appeared as an aggregated form and could hardly be dispersed in water. The DSC curve showed that physical mixture disappeared the intrinsic peaks of valsartan and polysorbate 80 at about $115^{\circ}C$ and $170^{\circ}C$, respectively. It appeared a new relatively broad endothermic peak at about $150^{\circ}C$, suggesting that valsartan was chemically interacted with polysorbate 80. Furthermore, it induced the severe skin irritation and damage in nude mice. Thus, polysorbate 80 must not be used in the preparation of valsartan-loaded pharmaceutical dosage forms.

Keywords

References

  1. S. Oparil, S. Dyke, F. Harris, J. Kief, D. James, A. Hester and S. Fitzsimmons, The efficacy and safety of valsartan compared with placebo in the treatment of patients with essential hypertension, Clin Ther., 18 (5), (1996). https://doi.org/10.1016/S0149-2918(96)80040-3
  2. J.L. Pool, R. Glazer, M. Weinberger, R. Alvarado, J. Huang and A. Graff, Comparison of valsartan/hydrochlorothiazide combination therapy at doses up to 320/25 mg versus monotherapy: A double-blind, placebo-controlled study followed by long-term combination therapy in hypertensive adults, Clin Ther., 29 (1), 61-73 (2007). https://doi.org/10.1016/j.clinthera.2007.01.007
  3. F. Waldmeier, G. Flesch, P. MuLler, T. Winkler, H.P. Kriemler, P. Buhlmayer and M.D. Gasparo, Pharmacokinetics, disposition and biotransformation of [14C]- radiolabelled valsartan in healthy male volunteers after a single oral dose, Xenobiotica, 27 (1), 59–71 (1997).
  4. M.D. Gasparo and S. Whitebread, Binding of valsartan to mammalian angiotensin AT1 receptors, Regul. Pept., 59, 303-311 (1995). https://doi.org/10.1016/0167-0115(95)00085-P
  5. Y. Mizuta, H. Kai, M. Fukui and T. Imaizumi, Long-term treatment with valsartan attenuates myocardial fibrosis and improves diastolic dysfunction in hypertensive patients The echorcardiographic assessment, J. of Cardiac Failure, 14 (7), S150 (2008). https://doi.org/10.1016/j.cardfail.2008.07.088
  6. L.M. Prisant, K.L. Thomas, E.F. Lewis, Z. Huang, G.S. Francis, W. D. Weaver, M.A. Pfeffer, J.J.V. McMurray, R.M. Califf and E.J. Velazquez, Racial analysis of patients with myocardial infarction complicated by heart failure and/or left ventricular dysfunction treated with valsartan, captopril, or both, J. Am. Coll. Cardiol., 51 (19), 1865-1871 (2008). https://doi.org/10.1016/j.jacc.2007.12.050
  7. C.J. Mbah, Solubilization of valsartan by aqueous glycerol, polyethylene glycol and micellar solutions, Pharmazie., 61 (4), 322-324 (2006).
  8. G.L. Amidon, H. Lennernäs, V.P. Shah and J.R. Crison, A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res., 12, 413-420 (1995). https://doi.org/10.1023/A:1016212804288
  9. B. Cappello, C.D. Maio, M. Iervilino and A. Miro, Improvement of solubility and stability of valsartan by hydroxypropyl-$\beta$-cyclodextrin, J. Inclusion Phenom. Macrocyclic Chem., 54, 289-294 (2006). https://doi.org/10.1007/s10847-005-9004-y
  10. S. Sheetal, K.B. Anil, K.S. Rakesh, B. Tanim, M. Amarnath and M. Amarnath, Pharmacoscintigraphic Evaluation of Polysorbate 80-Coated Chitosan Nanoparticles for Brain Targeting, American J. of Drug Delivery, 3(3), 205-212 (2005). https://doi.org/10.2165/00137696-200503030-00004
  11. W. Wasylaschuk, P. Harmon, G. Wagner, A. Harman, A. Templeton, H. Xu and R. Reed, Evaluation of hydroperoxides in common pharmaceutical excipients, J. Pharm. Sci., 96 (1), 106-116 (2007). https://doi.org/10.1002/jps.20726
  12. P.D Martino, R. Censi, C. Barthélémy, R. Gobetto, E. Joiris, A. Masic, P. Odou and S. Martelli, Characterization and compaction behaviour of nimesulide crystal forms, Int. J. Pharm., 342 (1), 137-144 (2007). https://doi.org/10.1016/j.ijpharm.2007.05.009
  13. B.C. Hancock and G. Zografi, Characteristics and significance of the amorphous state in pharmaceutical systems, J. Pharm. Sci., 86 (1), 1–12 (1997). https://doi.org/10.1021/js9601896
  14. L. Benassi, G. Bertazzoni, C. Magnoni, M. Rinaldi, C. Fontanesi and S. Seidenari, Decrease in toxic potential of mixed tensides maintained below the critical micelle concentration: an in vitro study, Skin Pharmacol Appl Skin Physiol., 16 (3), 156-164 (2003). https://doi.org/10.1159/000069758
  15. M. Schierholz, Physico-chemical properties of a rifampicinreleasing polydimethylsiloxane shunt, Biomaterials. 18 (8), 635-641 (1997). https://doi.org/10.1016/S0142-9612(96)00071-3
  16. A.N. Hassan and J.F. Frank, Influence of surfactant hydrophobicity on the detachment of Escherichia coli O157:H7 from lettuce, Int. J. Food Microbiol., 87 (1-2), 145-152 (2003). https://doi.org/10.1016/S0168-1605(03)00062-X
  17. L.A. Felton, T. Austin-Forbes and T.A. Moore, Influence of surfactants in aqueous-based polymeric dispersions on the thermomechanical and adhesive properties of acrylic films, Drug Dev. Ind. Pharm., 26 (2), 205-210 (2000). https://doi.org/10.1081/DDC-100100346
  18. C.F. Rawlinson, A.C. Williams, P. Timmins and I. Grimsey, Polymer-mediated disruption of drug crystallinity, Int. J. Pharm., 336 (1), 42-48 (2007). https://doi.org/10.1016/j.ijpharm.2006.11.029
  19. S. Zalac, M.Z. Khan, V. Gabelica, M. Tudja, E. Mestrovic and M. Romih, Paracetamol-propyphenazone interaction and formulation difficulties associated with eutectic formation in combination solid dosage forms, Chem. Pharm. Bull,, 47 (3), 302-307 (1999). https://doi.org/10.1248/cpb.47.302