• Title/Summary/Keyword: Dorsal raphe

Search Result 38, Processing Time 0.032 seconds

Neural pathway innervating ductus Deferens of rats by pseudorabies virus and WGA-HRP (흰쥐에서 WGA-HRP와 pseudorabies virus를 이용한 정관의 신경로에 대한 연구)

  • Lee, Chang-Hyun;Chung, Ok-Bong;Ko, Byung-Moon;Lee, Bong-Hee;Kim, Soo-Myung;Kim, In-Shik;Yang, Hong-Hyun
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.1
    • /
    • pp.11-24
    • /
    • 2003
  • This experimental studies was to investigate the location of PNS and CNS labeled neurons following injection of 2% WGA-HRP and pseudorabies virus (PRY), Bartha strain, into the ductus deferens of rats. After survival times 4-5 days following injection of 2% WGA-HRP and PRV, the rats were perfused, and their brain, spinal cord, sympathetic ganglia and spinal ganglia were frozen sectioned ($30{\mu}m$). These sections were stained by HRP histochemical and PRY inummohistochemical staining methods, and observed with light microscope. The results were as follows ; 1. The location of sympathetic ganglia projecting to the ductus deferens were observed in pelvic ganglion, inferior mesenteric ganglion and L1-6 lwnbar sympathetic ganglia. 2. The location of spinal ganglia projecting to the ductus deferens were observed in T13-L6 spinal ganglia. 3. The PRY labeled neurons projecting to the ductus deferens were observed in lateral spinal nucleus, lamina I, II and X of cervical segments. In thoracic segments, PRY labeled neurons were observed in dorsomedial part of lamina I, II and III, and dorsolateral part of lamina IV and V. Densely labeled neurons were observed in intermediolateral nucleus. In first lumbar segment, labeled neurons were observed in intermediolateral nucleus and dorsal commisural nucleus. In sixth lumbar segment and sacral segments, dense labeled neurons were observed in sacral parasympathetic nuc., lamina IX and X. 4. In the medulla oblongata, PRV labeled neurons projecting to the ductus deferens were observed in the trigeminal spinal nuc., A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nuc., rostroventrolateral reticular nuc., area postrema, nuc. tractus solitarius, raphe obscurus nuc., raphe pallidus nuc., raphe magnus nuc., parapyramidal nuc., lateral reticular nuc., gigantocellular reticular nuc.. 5. In the pons, PRV labeled neurons projecting to the ductus deferens were ohserved in parabrachial nuc., Kolliker-Fuse nuc., locus cooruleus, subcooruleus nuc. and AS noradrenalin cells. 6. In midbrain, PRV labeled neurons projecting to the ductus deferens were observed in periaqueductal gray substance, substantia nigra and dorsal raphe nuc.. 7. In the diencephalon, PRV labeled neurons projecting to the ductus deferens were observed in paraventricular hypahalamic nuc., lateral hypothalamic nuc., retrochiasmatic nuc. and ventromedial hypothalamic nuc.. 8. In cerebrum, PRV labeled neurons projecting to the ductus deferens were observed in area 1 of parietal cortex. These results suggest that WGA-HRP labeled neurons of the spinal cord projecting to the rat ductus deferens might be the first-order neurons related to the viscero-somatic sensory and sympathetic postganglionic neurons, and PRV labeled neurons of the brain and spinal cord may be the second and third-order neurons response to the movement of smooth muscles in ductus deferens. These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory and motor system monitaing the internal environment. These observations provide evidence for previously unknown projections from ductus deferens to spinal cord and brain which may be play an important neuroanatornical basic evidence in the regulation of ductus deferens function.

Studies on the Relationship of the Central Neural Pathways to the Urinary Bladder and Wijung($BL_{40}$) (방광(膀胱)과 위중(委中)의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Kim, Ho;Lee, Kwang-Gyu;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.805-817
    • /
    • 2009
  • This study was to investigate central localization of neurons projecting to the urinary bladder and urinary bladder-related acupoints(Wijung, $BL_{40}$) and neurons of immunoreactive to hormones and hormone receptors regulating urinary bladder function by using peudorabies virus(PRV). In this experiment, Bartha's strain of pseudorabies virus was used in rats to trace central localization of urinary bladder-related neurons and urinary bladder-related acupoints($BL_{40}$) which can regulate urinary system. PRV was injected into the urinary bladder and acupoints($BL_{40}$) related urinary system. After six days survival of rats, mainly common labeled neurons projecting to the urinary bladder and urinary bladder-related acupoints were identified in spinal cord, medulla, pons and diencephalon by PRV immunohistochemical staining method. First-order PRV labeled neurons projecting to urinary bladder and urinary bladder-related acupoints were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled preganglionic neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in the lateral horn area(sacral parasympathetic nucleus and intermediolateral nucleus), lamina V-X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting to urinary bladder and Wijung($BL_{40}$) was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus of tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, Barrington's nucleus and periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the paraventricular nucleus and a few ones were in the lateral hypothalamic nucleus, posterior hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, median eminence, perifornical nucleus, periventricular nucleus and suprachiasmatic nucleus. In cerebral cortex, PRV labeled neurons were marked mostly in the frontal cortex, 1,2 area, hind limb area, agranular insular cortex. Immunoreactive neurons to Corticotropin releasiing factor(CRF), Corticotropin releasiing factor-receptor(CRF-R), c-fos and serotonin were a part of labeled areas among the virus-labeled neurons of urinary bladder and Wijung($BL_{40}$). The commonly labeled areas were nucleus tractus solitarius, area postrema, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), locus coeruleus, A5 cell group, Barrington,s nucleus, arcuate nucleus, paraventricular nucleus, frontal cortex 1, 2 area, hind limb, and perirhinal(agranular insular) cortex. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of urinary bladder-relate organs and it was revealed by tracing PRV labeled neurons projecting urinary bladder and urinary bladder-related acupoints. These commonly labeled areas often overlap with the neurons connected with hormones and hormone receptors related to urination.

Antidepressant effects of capsaicin in rats with chronic unpredictable mild stress-induced depression (만성 스트레스로 유발된 우울증 쥐 모델에서 캡사이신의 항우울 효과)

  • Jae Ock, Lim;Min Ji, Kim;Jun Beom, Bae;Chan Hyeok, Jeon;Jae Hyeon, Han;Tae Hyeok, Sim;Youn Jung, Kim
    • Journal of Korean Biological Nursing Science
    • /
    • v.25 no.1
    • /
    • pp.280-320
    • /
    • 2023
  • Purpose: This study was conducted to assess the antidepressant effects of capsaicin in chronic depressive rats and elucidate the mechanism underlying its effects. Methods: Male Wistar rats (280~320 g, 8 weeks of age) were subjected to depression induced by chronic unpredictable mild stresses. The rats were exposed to 8 kinds of stresses for 8 weeks. In the last 2 weeks, fluoxetine or capsaicin was injected subcutaneously. The dose of fluoxetine was 10 mg/kg (body weight), while the doses of capsaicin consisted of low (1 mg/kg), middle (5 mg/kg), and high (10 mg/kg). The forced swim test (FST) was conducted to evaluate the immobility time of rats. The immobility time indicates despair, one of symptoms of depression. The change of tryptophan hydroxylase (TPH) in the dorsal raphe was investigated using immunohistochemistry. In the hippocampus cornu ammonis (CA) 1 and 3, glucocorticoid receptor (GR) expression was measured. Results: The immobility time in the FST was significantly lower (p < .05) in the low-dose (M = 32.40 ± 13.41 seconds) and middle-dose (M = 28.48 ± 19.57 seconds) groups than in the non-treated depressive rats (M = 90.19 ± 45.34 seconds). The amount of TPH in the dorsal raphe was significantly higher (p < .05) in the middle-dose (M = 249.17 ± 35.02) and high-dose (M = 251.0 ± 56.85) groups than in the non-treated depressive rats (M = 159.78 ± 41.16). However, GR expression in the hippocampus CA1 and CA3 did not show significant differences between the non-treated depressive rats and the capsaicin-injected rats. Conclusion: This study suggests that capsaicin produces an antidepressant-like effect on chronic unpredictable mild stress-induced depression in rats via the serotonin biosynthesis pathway.

Studies of the Central Neural Pathways to the Hapgok(LI4) and Large Intestine (합곡과 대장의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.217-226
    • /
    • 2011
  • The aim of this study is to identify central neural pathway of neurons following the projection to the large intestine and Hapgok(LI4) which is Won acupoint of the large intestine meridian of hand-yangmyeong. In this experiment, Bartha's strain of pseudorabies virus was used to trace central localization of neurons related with large intestine and acupoint(LI4) which has been known to be able to regulate intestinal function. The animals were divided into 3 groups: group 1, injected into the large intestine; group 2, injected into the acupoint(LI4); group 3, injected into the acupoint(LI4) after severing the radial, ulnar, median nerve. After four days survival of rats, PRV labeled neurons were identified in the spinal cord and brain by immunohistochemical method. First-order PRV labeled neurons following the projection to large intestine, acupoint(LI4) and acupoint(LI4) after cutting nerve were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in lamina V- X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the arcuate nucleus and median eminence. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of large intestine-related organs and it was revealed by tracing PRV labeled neurons projecting large intestine and related acupoint(LI4).

Brain Mechanisms Generating REM Sleep (뇌의 REM 수면 발생기전)

  • Sohn, Jin-Wook
    • Sleep Medicine and Psychophysiology
    • /
    • v.2 no.2
    • /
    • pp.133-137
    • /
    • 1995
  • The author reviews current knowledge about what REM sleep is and where and how it is generated. REM sleep is the state in which our most vivid dreams occur. REM sleep is identified by the simultaneous presence of a desynchronized cortical EEG, an absence of activity in the antigravity muscles(atonia), and periodic bursts of rapid eye movements. Another characteristic phenomena of REM sleep are the highly synchronized hippocampal EEG of theta frequency and the ponto-geniculo-occipital(PGO) spike. All these phenomena can be explained in terms of changes in neuronal activity. Transection studies have determined that the pons is sufficient for generating REM sleep. Lesion studies have identified a small region in the lateral pontine tegmentum corresponding to lateral portions of the nucleus reticularis pontis oralis(RPO) and the region immediately ventral to the locus coeruleus, which is required for REM sleep. Unit recording studies have found a population of cells within this region that is selectively active in REM sleep. Cholinergic neurons of the giant cell field of pontine tegmentum(ETG), which is 'REM a sleep-on cells', has shown to be critically involved in the generation of REM sleep. Noradrenergic neurons of the locus coeruleus and serotonergic neurons of the dorsal raphe, which are called 'REM sleep-off cells', appear to act in a reciprocal manner to the cholinergic neurons. It is proposed that the periodic cessations of discharge of 'REM sleep-off cells' during REM sleep might be significant for the prevention of the desensitization of receptors of these neurons.

  • PDF

Alteration of Neural Activity and Effect of Yanggyuksanhwa-tang(Lianggesanhuo-tang) on Cerebral Ischemia of Aged BCAO Rats; [$^{14}C$]2-Deoxyglucose Autoradiography Study (노령 흰쥐의 뇌허혈 손상시 뇌대사활성의 변화 및 량격산화탕의 영향에 대한 [$^{14}C$2-Deoxyglucose Autoradiography 연구)

  • Sohn, Cheol-Hoon;Shin, Jung-Won;Sohn, Young-Joo;Jung, Hyuk-Sang;Won, Ran;Sohn, Nak-Won
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.51-64
    • /
    • 2003
  • Objective : This study investigated the alteration of neural activity and effect of Yanggyuksanhwa-tang (Lianggesanhuo-tang) on cerebral ischemia of rats. Methods : Considering age-related impact on cerebral ischemia, aged rats (18 months old) were used for this study. Ischemic damage was induced by the transient occlusion of bilateral common carotid arteries (BCAO) with hypotension. Yanggyuksanhwa-tang (Lianggesanhuo-tang) was administered twice a day orally. Then alterations of neural activities in the brain of aged BCAO rats were measured by the [$^{14}C$]2-deoxyglucose autoradiography method. Results : The BCAO in aged rats led to significant decrease of neural activity in the whole brain. Treatment with Yanggyuksanhwa-tang (Lianggesanhuo-tang) significantly attenuated the decrease of neural activity in the whole brain following BCAO ischemia. Treatment significantly attenuated the decrease of neural activity in the CA1, CA2, CA3, dentate gyrus of the hippocampus, activated barrel, barrel cortex, somatosensory cortex, cingulate cortex, caudate putamen, and medial septal nucleus following BCAO in aged rats. Treatment with Yanggyuksanhwa-tang (Lianggesanhuo-tang) also significantly attenuated the decrease of neural activity in the anteroventral thalamic nucleus, ventral anterior thalamic nucleus, arcuate nucleus, posterior hypothalamic area, medial mammillary nucleus, lateral periaqueductal gray, dorsal raphe nucleus, interpeduncular nucleus, median raphe nucleus, and medial pontine nucleus. Conclusion : It can be suggested that Yanggyuksanhwa-tang (Lianggesanhuo-tang) has a neuroprotecuve effect on cerebral ischemia through the control of glucose metabolic rate and cerebral blood flow.

  • PDF

Inhibitory Modulation of 5-Hydroxytryptamine on Corticostriatal Synaptic Transmission in Rat Brain Slice

  • Choi, Se-Joon;Chung, Won-Soon;Kim, Ki-Jung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.295-301
    • /
    • 2003
  • Striatum plays a crucial role in the movement control and habitual learning. It receives an information from wide area of cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from raphe nuclei. In the present study, the effects of 5-HT to modulate synaptic transmission were studied in the rat corticostriatal brain slice using in vitro extracellular recording technique. Synaptic responses were evoked by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. 5-HT reversibly inhibited coticostriatal glutamatergic synaptic transmission in a dose-dependent fashion (5, 10, 50, and $10{\mu}M$), maximally reducing in the corticostriatal population spike (PS) amplitude to $40.1{\pm}5.0$% at a concentration of $50{\mu}M$ 5-HT. PSs mediated by non-NMDA glutamate receptors, which were isolated by bath application of the NMDA receptor antagonist, d,l-2-amino-5-phospohonovaleric acid (AP-V), were decreased by application of $50{\mu}M$ 5-HT. However, PSs mediated by NMDA receptors, that were activated by application of zero $Mg^{2+}$ aCSF, were not significantly affected by $50{\mu}M$ 5-HT. To test whether the corticostriatal synaptic inhibitions by 5-HT might involve a change in the probability of neurotransmitter release from presynaptic nerve terminals, we measured the paired-pulse ratio (PPR) evoked by 2 identical pulses (50 ms interpulse interval), and found that PPR was increased ($33.4{\pm}5.2$%) by 5-HT, reflecting decreased neurotransmitter releasing probability. These results suggest that 5-HT may decrease neurotransmitter release probability of glutamatergic corticostriatal synapse and may be able to selectively decrease non-NMDA glutamate receptor-mediated synaptic transmission.

Functional Anatomy of the Olfactory Organ in the Torrent Catfish, Liobagrus somjinensis(Siluriformes, Amblycipitidae) (섬진자가사리 Liobagrus somjienesis(Siluriformes, Adrianichthyidae) 후각기관의 기능 해부학적 구조)

  • Kim, Hyun Tae;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.30 no.1
    • /
    • pp.65-68
    • /
    • 2018
  • The anatomical study of the olfactory organ in Liobagrus somjinensis, being related to the habitat environment and ecological habit, was carried out using a stereomicroscopy and digital camera. The paired olfactory organs are situated at the dorsal part of the snout, and consisted of two opening (anterior and posterior nostrils) and the olfactory chamber. The tubular anterior nostril is located between the tip of upper lip and the nasal barbel. The posterior nostril flat to the surface is adjacent entirely to the basement of the nasal barbel. The olfactory chamber has a rosette structure with 22~24 lamellae of linguiform, arranged transversely and radially from the medium raphe. These results may prove that L. somjinensis is dependent on olfaction, related to the hiding, the feeding and the nocturnal lifestyle in rapids.

Structure and Histological Characters of the Olfactory Organ in Korean Endemic Fish, Microphysogobio yaluensis (Cypriniformes, Cyprinidae) (돌마자 Microphysogobio yaluensis(Cypriniformes, Cyprinidae) 후각기관의 구조 및 조직학적 특성 연구)

  • Kim, Hyun Tae;Lee, Yong Joo;Kim, Hyeong Su;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.30 no.3
    • /
    • pp.161-166
    • /
    • 2018
  • The olfactory organ of Korean endemic fish Microphysogobio yaluensis are described anatomically and histologically, focused on relationship to its habitat and ecology. The paired olfactory organs are located at the dorsal snout, and externally consist of two semicircular nostrils and single nasal flap. They internally have rosette structure with 22 to 24 units of lamellae and the raphe inside the olfactory chamber. The lamella is made up of the sensory and the non-sensory epitheliums. The sensory epithelium has olfactory receptor neurons, supporting cells and basal cells whereas the nonsensory epithelium has stratified epithelial cells, ciliated non-sensory cells and mucous cells with acidic and neutral mucins. These structures might be considered that M. yaluensis has the olfactory organ which corresponds to the high sensitivity for its habitat and ecology, and is usable as a taxonomic key.

Effects of Physical Activity and Melatonin in a Rat Model of Depression Induced by Chronic Stress (자유로운 신체운동과 멜라토닌이 우울장애 동물모델에 미치는 효과)

  • Seong, Ho Hyun;Jung, Sung Mo;Kim, Si Won;Kim, Youn Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Purpose: Stress, depending on its intensity and duration, results in either adaptive or maladaptive physiological and psychological changes in humans. Also, it was found that stressful experiences increase the signs of behavioral despair in rodents. On the other hand, exercise and melatonin treatment is believed to have many beneficial effects on health. Thus, this study was designed to evaluate the anti-depressant effects of physical activity and melatonin against chronic stress-induced depression in rats. Methods: Adult male Sprague-Dawley(SD) rats(200-250g, 7 weeks of age) were subjected to depression induced by chronic stress. Chronic depression was induced with forced-swim stress (FSS) and repeated change of light-dark cycle for 4 weeks. In the last 2 weeks, some rats were confined in a cage enriched with a running wheel, seesaw and chewed a ball from 19:00 to 07:00 every day. Melatonin was injected intra-peritoneally (I.P), and the rats received intraperitoneal injections of melatonin (15 mg/kg). The Forced Swim Test (FST) was performed to evaluate the immobility behaviors of rats for a 5 min test. Results: It was found that, the immobility time in FST was significantly (p<.05) lower in physical exercise ($M=58.83{\pm}22.73$) and melatonin ($M=67.33{\pm}37.73$) than in depressive rats ($M=145.93{\pm}63.16$) without physical activity. Also, TPH positive cell in dorsal raphe was significantly (p<.05) higher in exercise ($M=457.38{\pm}103.21$) and melatonin ($M=425.38{\pm}111.56$) than in depressive rats ($M=258.25{\pm}89.13$). Conclusion: This study suggests that physical activity and melatonin produces antidepressant-like effect on stress-induced depression in rats. So, physical exercise and melatonin may be a good intervention in depression patients.