• 제목/요약/키워드: Dorsal Aorta Cannulation

검색결과 6건 처리시간 0.01초

외과적 수술에 의한 송어의 혈장 아미노산 농도 측정을 이용한 아미노산 요구량 설정 모델 개발에 관한 기초연구 (Development of Modeling System for Assessing Essential Amino Acid Requirements Using Surgically Modified Rainbow Trout)

  • 배승철;옥임호;박건준;김강웅;최세민
    • 한국양식학회지
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2003
  • 무지개송어의 대동맥에 삽입관을 부착한 후 스트레스와 관련된 생리화학적 반응을 조사하였고, 실험사료의 위내 강제공급 후 혈장내 유리 아미노산의 농도변화를 비교하였다. 무지개 송어에 있어 아미노산의 요구량 설정 모델 개발을 위한 기초연구로서 사료 영양학적 연구를 위한 새로운 사료공급 및 혈액채취 방법의 개발을 위하여, 강제투여 및 대동맥 삽입방법의 적용 가능성을 조사하였다. 스트레스와 관련된 생리화학적 반응조사에 있어서 혈액내 헤마토크리트(Ht)는 6시간에 최대치를 보였고, 12시간에 최초수준으로 돌아와 48시간까지 유지되었고 혈장내 코티졸과 글루코스는 3시간에 증가하기 시작하여 6시간에 최대치를 보였으며(P<0.05), 48시간에 최초수준으로 돌아왔다. 혈장내 총 단백질 함량, 삼투압, Na농도, K농도, Cl농도, 헤모글로빈(Hb)수와 적혈구수(red blood cell, RBC)는 48시간동안 큰 변화를 보이지 않았다. 실험사료의 위내 강제 공급 후 혈장내 유리 아미노산의 농도 변화는, arginine, histidine, Iysine, methionine, threonine. valine, glutamic acid. isoleucine, leucine, phenylalanine과 tryptophan이 사료공급 후 4시간에 최대치를 보였고, 8~24시간사이에 최초수준 또는 감소하고, 48시간까지 일정하게 유지되었다. glycine은 사료공급 후 4~8사이에 감소하여 12시간에 최대치를 보였고 24시간에 최초수준으로 돌아왔다. alanine과 aspartic acid의 농도는 사료공급 후 4시간에 최대치를 보였고, 48시간에 기본농도로 돌아왔다. 상기 결과를 토대로, 위내 강제 공급 방법과 대동맥 삽입방법을 무지개 송어의 사료 영양학적 연구에 적용 가능하였고, 유리아미노산의 농도 측정으로 필수 아미노산 요구량 추정이 가능함을 보여주었다.

Determination of Valine requirements by usging plasma free amino acid concentrations in rainbow trout(Oncorhynchus mykiss) with dorsal aorta cannulation

  • Sungchul C. Bai;Park, Gunjun;Im ho Ok;Kim, Youngchul
    • 한국양식학회:학술대회논문집
    • /
    • 한국양식학회 2003년도 추계학술발표대회 논문요약집
    • /
    • pp.67-67
    • /
    • 2003
  • Dorsal aorta cannulated rainbow trout averaging 505 $\pm$ 6.5g (Mean $\pm$ SD) were divided into 7 groups (5 fish per group). Twenty four hour post feeding, cannulated fish were intubated with one of seven L-amino acid diets containing graded levels of Valine (Val. : 0.45, 0.95, 1.20, 1.45, 1.70, 1.95 or 2.45%) at 1% of body weight. Blood samples were taken at 0, 5 and 24hr after feeding the experimental diets. Post-prandial (5h after feeding) plasma-free Valine concentrations (PPval.) increased linearly from fish fed diets containing Valine between 0.45 and 1.45%, but the concentration remained constant from fish fed diets containing valine between 1.45 and 2.45%. Post-absorptive (24h after feeding) plasma free valine concentrations (PAval) increased linearly from fish fed diets containing valine between 0.45 and 1.45%, but the concentration remained constant from fish fed diets containing valine between 1.45 and 1.95%. Using the broken-line model analysis, the dietary valine requirement by PPval and PAval could be 1.44 and 1.50% in rainbow trout, respectively. These results supported that the estimated dietary valine requirement by PP(val.) and PA(val.) could be in close agreement with the values obtained from the previous conventional feeding method. Thus, the use of PFAA concentrations for determining essential amino acid requirements could be possible in rainbow trout with dorsal aorta cannulation.

  • PDF

Determination of the dietary lysine requirement by measuring plasma free lysine concentrations in rainbow trout Oncorhynchus mykiss after dorsal aorta cannulation

  • Yun, Hyeonho;Park, Gunjun;Ok, Imho;Katya, Kumar;Hung, Silas SO;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • 제19권1호
    • /
    • pp.4.1-4.7
    • /
    • 2016
  • This study evaluated the dietary lysine requirement by measuring the plasma free lysine concentrations in rainbow trout, Oncorhynchus mykiss after dorsal aorta cannulation. A basal diet containing 36.6 % crude protein (29.6 % crystalline amino acids mixture, 5 % casein and 2 % gelatin) was formulated to one of the seven L-amino acid based diets containing graded levels of lysine (0.72, 1.12, 1.52, 1.92, 2.32, 2.72 or 3.52 % dry diet). A total of 35 fish averaging $512{\pm}6.8g$ ($mean{\pm}SD$) were randomly distributed into seven groups with five fish in each group. After 48 h of feed deprivation, each group of fish was fed one of the experimental diets by intubation at 1 % body weight. Blood samples were taken at 0, 5 and 24 h after intubation. Post-prandial plasma free lysine concentrations (PPlys, 5 h after intubation) of fish fed diets containing ${\geq}2.32%$ lysine were higher than those of fish fed diets containing ${\leq}1.92%$ lysine. Post-absorptive free lysine concentrations (PAlys, 24 h after intubation) of fish fed diets containing 2.32 and 3.52 % lysine were higher than those of fish fed diets containing ${\leq}1.52%$ lysine. The brokenline regression analysis on the basis of PPlys and PAlys indicated that the lysine requirement of rainbow trout could be 2.34 and 2.20 % in diet. Therefore, these results strongly suggested that the dietary lysine requirement based on the broken-line model analyses of PPlys and PAlys could be greater than 2.20 % but less than 2.34 % (corresponding to be $6.01%{\leq},but{\leq}6.39%$ in dietary protein basis, respectively) in rainbow trout. Also, these results shown that the quantitative estimation of lysine requirement by using PPlys and PAlys could be an acceptable method in fish.

Evaluation of Optimum Dietary Threonine Requirement by Plasma Free Threonine and Ammonia Concentrations in Surgically Modified Rainbow Trout, Oncorhynchus mykiss

  • Yun, Hyeonho;Park, Gunjun;Ok, Imho;Katya, Kumar;Heung, Silas;Bai, Sungchul C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권4호
    • /
    • pp.551-558
    • /
    • 2015
  • This study was carried out to evaluate the dietary threonine requirement by measuring the plasma free threonine and ammonia concentrations in rainbow trout, Oncorhynchus mykiss after dorsal aorta cannulation. A total of 70 fish (average initial weight $506{\pm}8.2g$) were randomly distributed into each of the 14 net cages (5 fish/cage). After 48 hours (h) of feed deprivation, each group was intubated at 1% body weight with one of the seven L-amino acid based diets containing graded levels of threonine (0.42%, 0.72%, 0.92%, 1.12%, 1.32%, 1.52%, or 1.82% of diet, dry matter basis). Blood samples were taken at 0, 5, and 24 h after intubation. Post-prandial plasma free threonine concentrations (PPthr) of fish 5 h after intubation with diets containing 1.32% or more threonine were significantly higher than those of fish intubated with diets containing 1.12% or less threonine (p<0.05). Post-absorptive free threonine concentrations (PAthr) after 24 h of intubation of the fish with diets containing 0.92% or more threonine were significantly higher than those of fish intubated with diets containing 0.72% or less threonine. Post-prandial plasma ammonia concentrations (PPA, 5 h after intubation) were not significantly different among fish intubated with diets containing 1.12% or less threonine, except the PPA of fish intubated with diet containing 0.42% threonine. Broken-line model analyses of PPthr, PAthr, and PPA indicated that the dietary threonine requirement of rainbow trout should be between 0.95% (2.71) and 1.07% (3.06) of diet (% of dietary protein on a dry matter basis).

Dorsal aorta cannulation을 이용한 무지개 송어에 있어서 혈장내 유리아미노산에 미치는 영향

  • 옥임호;박건준;최세민;배승철
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2000년도 춘계수산관련학회 공동학술대회발표요지집
    • /
    • pp.241-242
    • /
    • 2000
  • 혈장내 필수 아미노산들의 농도 변화는 사료내 단백질원의 질(quality)에 따라 달라지며, 성장과 상관관계가 있다고 보고하였다(Young, 1970). 하지만 사료공급 이전에 절식 기간 및 공급방법에 따른 실험 조건의 차이 등으로 인하여 시간대별 혈장내 유리 아미노산의 농도 변화에 대한 연구들마다 일관되지 못한 결과를 보여주었다. 따라서 본 연구는 stomach intubation 방법으로 사료를 공급한 무지개 송어에 있어 시간대별 혈장내 아미노산의 농도 변화를 조사하며 사료의 품질 및 아미노산 대사와 관련한 연구에 기초자료를 마련하는데 그 목적이 있다. (중략)

  • PDF

Post Prandial Plasma Free Arginine Concentrations Increase in Rainbow Trout Fed Arginine-deficient Diets

  • Park, Gunjun;Bai, Sungchul C.;Ok, Im-ho;Han, Kyungmin;Hung, Silas S.O.;Rogers, Quinton R.;Min, Taesun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권3호
    • /
    • pp.396-402
    • /
    • 2005
  • Three experiments were conducted to determine the effects of dietary arginine concentrations on plasma free amino acid (PAA) concentrations in rainbow trout, Oncorhynchus mykiss (Walbaum). The first experiment was conducted to determine appropriate post-prandial and food deprivation sampling times in dorsal aorta cannulated rainbow trout averaging 519${\pm}$9.5 g (mean${\pm}$SD) at $16^{\circ}C$. Blood samples were taken at 0, 2, 3, 4, 5, 6 and 24 h after feeding (0 and 24 h blood samples were taken from the same group of fish). PAA concentrations increased by 2 h post-feeding and the concentration of all essential amino acids except histidine peaked at 5 h and returned to 0 time values by 24 h. In the second experiment dorsal aorta cannulated rainbow trout averaging 528${\pm}$11.3 g (mean${\pm}$SD) were divided into 6 groups of 4 fish to study the effect of dietary arginine levels on PAA. After 24 h food deprivation, each group of fish was fed one of six L-amino acid diets containing graded levels of arginine (0.48, 1.08, 1.38, 1.68, 1.98 or 2.58%) by intubation. Blood samples were taken at 0, 5 and 24 h after feeding. Post-prandial (5 h after feeding) plasma-free arginine concentrations (PParg) showed a breakpoint at 1.03% arginine in the diet and post-absorptive (24 h after feeding) plasma free-arginine concentrations (PAarg) showed a breakpoint at 1.38% arginine. PAarg increased linearly from fish fed diets containing arginine between 0.48% and 1.38%, and the concentrations remained constant from fish fed diets containing arginine at or above 1.38%, but were all below PParg at all time points. Results of the third experiment confirm the results that PParg concentrations from fish fed arginine deficient diets were higher than PAarg (0 or 24 h values). Thus, in contrast to mammals and birds, the PParg when arginine is present in the diet as the most limiting amino acid such that it severely limits growth, increases in plasma rather than decreases.