• Title/Summary/Keyword: Doppler spectrum

Search Result 133, Processing Time 0.022 seconds

A Non-Stationary Geometry-Based Cooperative Scattering Channel Model for MIMO Vehicle-to-Vehicle Communication Systems

  • Qiu, Bin;Xiao, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2838-2858
    • /
    • 2019
  • Traditional channel models for vehicle-to-vehicle (V2V) communication usually assume fixed velocity in static scattering environment. In the realistic scenarios, however, time-variant velocity for V2V results in non-stationary statistical properties of wireless channels. Dynamic scatterers with random velocities and directions have been always utilized to depict the non-stationary statistical properties of the channel. In this paper, a non-stationary geometry-based cooperative scattering channel model is proposed for multiple-input multiple-output (MIMO) V2V communication systems, where a birth-death process is used to capture the appearance and disappearance dynamic properties of moving scatterers that reflect the time-variant time correlation and Doppler spectrum characteristics. Moreover, our model has more straight and concise to study the impact of the vehicular traffic density on channel characteristics and thus avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions. The numerical results validate our analysis and demonstrate that setting important parameters of our model can appropriately build up more purposeful measurement campaigns in the future.

Clutter Fence Effect on Data Quality of Ultra High Frequency Radar (UHF 레이더의 자료 품질에 미치는 클러터 펜스 효과)

  • Jo, Won-Gi;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.275-282
    • /
    • 2019
  • Clusters generated by features such as mountains or buildings are considered as the contaminated data that are independent of atmospheric phenomena. The basic way to reduce the clutter signal is to install a clutter fence around the wind profiler. In order to investigate the effect of clutter fence on the wind profiler data, the wind vector collection rate and wind vector accuracy of wind profiler was investigated before and after clutter fence installation. The clutter fence of wind profiler contributed to improve the data quality as well as the data collection rate.

Magnetic Field Strengths of Flaring Region in the Jet of CTA 102

  • Kim, Sang-Hyun;Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2021
  • We present the magnetic field strengths of CTA 102 using multi-frequency data at 2.6-343.5 GHz in order to study the physical origins of radio flares. The observations at 22 and 43 GHz were conducted using the single-dish radio telescopes of the Korean VLBI Network (KVN) from December 2012 until May 2018 (MJD 56200-58400). We used multi-frequency data obtained from the Effelsberg 100-m, OVRO 40-m, Metsähovi 14-m, IRAM 30-m, SMA, ALMA, and VLBA telescopes. During the period of the observations, two major flares (R1 and R2) are seen clearly at 15 and 37 GHz during MJD 57500-57800 and MJD 58000-58300, respectively. The source shows typical variability with time-scales ranging from 20-161 days at 15 GHz. The variability Doppler factor is in the range of 11.51-31.23. The quasi-simultaneous radio data are used to investigate the synchrotron spectrum of the source, finding that the synchrotron radiation is self-absorbed. The turnover frequency and the peak flux density of the synchrotron self-absorption (SSA) spectra are in ranges of 38.06-167.86 GHz and 1.49-10.38 Jy, respectively. From the SSA spectra, magnetic field strengths are estimated to be < 10 mG. The equipartition magnetic field strengths are larger than the SSA magnetic field strengths by a factor of > 100. This indicates that the radio flares may be related to a particle energy-dominated emission region.

  • PDF

Investigation of Various Radiation Proton Energy Effect on n, p Type Silicon by Positron Annihilation Method (양전자 소멸 측정법으로 양성자 조사에너지 변화에 대한 n, p형 실리콘 구조 특성)

  • Lee, Chong Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.341-347
    • /
    • 2013
  • The n-type and p-type silicon samples were exposed by 40.0, 3.98 MeV proton beams ranging between 0 to $20.0{\times}10^{13}protons/cm^2$. Coincidence Doppler Broadening Positron Annihilation Spectroscopy (CDBPAS) were applied to study of defect characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the gamma spectrum and the total counts of whole gamma spectrum. The S-parameter values strongly depend on the irradiated proton beam that indicated the defects generate more, rather than the energy intensity. 40 MeV irradiated proton beam in the n-type silicon at $20.0{\times}10^{13}protons/cm^2$ was larger defects than 3.98 MeV irradiated proton beam. It was analysis between the proton irradiation beams and the proton intensities of the irradiation. Because of the Bragg peak, SRIM results shows mainly in a certain depth of the sample to form the defect by the proton irradiation, rather than the defects to appear for the entire sample.

Preliminary Analysis of Data Quality and Cloud Statistics from Ka-Band Cloud Radar (Ka-밴드 구름레이더 자료품질 및 구름통계 기초연구)

  • Ye, Bo-Young;Lee, GyuWon;Kwon, Soohyun;Lee, Ho-Woo;Ha, Jong-Chul;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • The Ka-band cloud radar (KCR) has been operated by the National Institute of Meteorological Research (NIMR) of Korea Meteorological Administration (KMA) at Boseong National Center for Intensive Observation of severe weather since 2013. Evaluation of data quality is an essential process to further analyze cloud information. In this study, we estimate the measurement error and the sampling uncertainty to evaluate data quality. By using vertically pointing data, the statistical uncertainty is obtained by calculating the standard deviation of each radar parameter. The statistical uncertainties decrease as functions of sampling number. The statistical uncertainties of horizontal and vertical reflectivities are identical (0.28 dB). On the other hand, the statistical uncertainties of Doppler velocity (spectrum width) are 2.2 times (1.6 times) larger at the vertical channel. The reflectivity calibration of KCR is also performed using X-band vertically pointing radar (VertiX) and 2-dimensional video disdrometer (2DVD). Since the monitoring of calibration values is useful to evaluate radar condition, the variation of calibration is monitored for five rain events. The average of calibration bias is 10.77 dBZ and standard deviation is 3.69 dB. Finally, the statistical characteristics of cloud properties have been investigated during two months in autumn using calibrated reflectivity. The percentage of clouds is about 26% and 16% on September to October. However, further analyses are required to derive general characteristics of autumn cloud in Korea.

Performance Analysis of DMF Acquisition System in Frequency-Selective Rayleigh Fading Channel (주파수 선택적 레일리 페이딩 채널에서의 DMF 초기동기 장치의 성능분석)

  • 김성철;이연우;조춘근;박형근;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1351-1360
    • /
    • 1999
  • In frequency selective channels, conventional PN code acquisition schemes are not ideal candidates. This is because they are primarily designed for the AWGN channel. In this paper, a direct-sequence spread-spectrum(DSSS) PN code acquisition system based on digital matched filtering (DMF) with automatic threshold control(ATC) algorithm is presented and analyzed with regards to probability of detection and probability of false alarm. These two important probabilities, the probability of detection ($P_D$) and the probability of false alarm ($P_{FA}$) are derived and analyzed in considering Doppler shift, sampling rate, mean acquisition time, and PN chip rate in frequency selective Rayleigh fading channel when using serial-search method as detection technique. From computer simulation results of a DMF acquisition system model, it is shown that the performance of the acquisition system using ATC algorithm is better than that of constant threshold system.

  • PDF

An Efficient frame size Decision and Resource Allocation Method for Multiuser OFDM/TDD System in Multicell Environment (멀티셀 기반의 다중 사용자 OFDM-TDD 시스템에서 효과적인 프레임 크기 결정과 자원 할당 기법)

  • Keum Seung-Won;Kim Jung-Gon;Shin Kil-Ho;Kim Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.760-768
    • /
    • 2006
  • In this paper, an novel resource allocation scheme is proposed for adaptive multiuser OFDM-TDD systems in multiuser, multicell and frequency-selective time-varying channels. The optimal frame size and mode switching level of each user is determined by maximizing the spectrum efficiency. In multi-cell environment, the allocation scheme must consider the cochannel interference of other cells. The measured SINR is changed in one frame size because the interference is changed. The frame size is determined to consider both the optimal frame size and cochannel user's frame size of other cells. we propose the efficient resource allocation scheme which is satisfied the target BER.

Wind-driven Current in the East Sea Observed from Mini-met Drifters (기상뜰개로 관측된 동해에서의 취송류)

  • Lee, Dong-Kyu
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.103-110
    • /
    • 2014
  • A wind-driven current in the East Sea from Lagrangian measurements of wind and current at 15 m using MiniMet drifters was analyzed. Spectral analysis of the current from 217 pieces of a 10 day-long time series shows the dominant energy at the inertial frequency for the current at 15 m. Wind has energy peaks at a 0.2-0.5 cycles per day (cpd) frequency band. The power spectrum of the clockwise rotating component is predominant for the current and was 1.5-2 times larger than the anticlockwise rotating component for wind. Co-spectra between the wind and current show two peak frequency bands at subinertial frequency and 0.5-0.3 cpd. Coherences between the wind and current at those peak frequencies are significant with 95% confidence and phase differences were $90-100^{\circ}$. From the phase differences, the efolding depth is estimated as 17 m and this e-folding depth is smaller than the estimation by Chereskin's (1999) 25 m using a moored Acoustic Doppler Current Profiler and an anemometer installed at the surface buoy. The angle between the wind-driven current (or ageostrophic current) and wind from this study was also much larger than the global estimate by Rio and Hernandez (2003) using reanalysis wind and drifters. The possible explanation for the discrepancy comes from the fact that the current is driven by a wind of smaller length scale than 250 km but the satellite or the reanalysis products do not resolve winds of length scale smaller than 250 km. Large rms differences between Mini-Met and QuickSCAT wind on spatial lags smaller than 175 km substantiate this explanation.

ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI

  • Heo, Jeong-Eun;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The symbiotic star V1016 Cygni, a detached binary system consisting of a hot white dwarf and a mass-losing Mira variable, shows very broad emission features at around 6825 Å and 7082 Å, which are Raman scattered O vi λλ 1032, 1038 by atomic hydrogen. In the high resolution spectrum of V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph these broad features exhibit double peak profiles with the red peak stronger than the blue counterpart. However, their profiles differ in such a way that the blue peak of the 7082 feature is relatively weaker than the 6825 counterpart when the two Raman features are normalized to exhibit an equal red peak strength in the Doppler factor space. Assuming that an accretion flow around the white dwarf is responsible for the double peak profiles, we attribute this disparity in the profiles to the local variation of the flux ratio of O vi λλ 1032, 1038 in the accretion flow. A Monte Carlo technique is adopted to provide emissivity maps showing the local emissivity of O vi λ1032 and O vi λ1038 in the vicinity of the white dwarf. We also present a map indicating the differing flux ratios of O vi λλ 1032 and 1038. Our result shows that the flux ratio reaches its maximum of 2 in the emission region responsible for the central trough of the Raman feature and that the flux ratio in the inner red emission region is almost 1. The blue emission region and the outer red emission region exhibit an intermediate ratio around 1.5. We conclude that the disparity in the profiles of the two Raman O vi features strongly implies accretion flow around the white dwarf, which is azimuthally asymmetric.

Underwater Acoustic Communication Channel Modeling Regarding Magnitude Fluctuation Based on Ocean Surface Scattering Theory and BELLHOP Ray Model and Its Application to Passive Time-reversal Communication (해수면에 의한 신호 응답 강도의 시변동성 특성이 적용된 벨홉 기반의 수중음향 통신 채널 모델링 및 수동 시역전 통신 응용)

  • Kim, Joonsuk;Koh, Il-Suek;Lee, Yongshik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.116-123
    • /
    • 2013
  • This paper represents generation of time-varying underwater acoustic channels by performing scattering simulation with time-varying ocean surface and Kirchhoff approximation. In order to estimate the time-varying ocean surface, 1D Pierson-Moskowitz ocean power spectrum and Gaussian correlation function were used. The computed scattering coefficients are applied to the amplitudes of each impulse of BELLHOP simulation result. The scattering coefficients are then compared with measured doppler spectral density of signal components which were scattered from ocean surface and the correlation time used in the Gaussian correlation function was estimated by the comparison. Finally, bit-error-rate and channel correlation simulations were performed with the generated time-varying channel based on passive time-reversal communication scenario.