• Title/Summary/Keyword: Doppler Shift

Search Result 210, Processing Time 0.146 seconds

Adaptive Compensation Method Using the Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite Communication System

  • You, Moon-Hee;Lee, Seong-Pal;Han, Young-Yearl
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.32-39
    • /
    • 2000
  • In low earth orbit (LEO) satellite communication systems, more severe phase distortion due to Doppler shift is frequently detected in the received signal than in cases of geostationary earth orbit (GEO) satellite systems or terrestrial mobile systems. Therefore, an estimation of Doppler shift would be one of the most important factors to enhance performance of LEO satellite communication system. In this paper, a new adaptive Doppler compensation scheme using location information of a user terminal and satellite, as well as a weighting factor for the reduction of prediction error is proposed. The prediction performance of the proposed scheme is simulated in terms of the prediction accuracy and the cumulative density function of the prediction error, with considering the offset variation range of the initial input parameters in LEO satellite system. The simulation results showed that the proposed adaptive compensation algorithm has the better performance accuracy than Ali's method. From the simulation results, it is concluded the adaptive compensation algorithm is the most applicable method that can be applied to LEO satellite systems of a range of altitude between 1,000 km and 2,000 km for the general error tolerance level, M = 250 Hz.

  • PDF

A study on the new doppler effect compensation scheme for OFDM system (OFDM system에서 새로운 Doppler effect 보정 기법에 대한 연구)

  • Lee, Sim-Seok;Jeong, Chang-Ho;Gang, Du-Lee;Lee, Byeong-Seop
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • ODFM(Orthogonal Frequency Division Multiplexing) technique is suitable for high speed data transfer both in wired/wireless channels, and is actively studied recently. Among them, WiBro based on IEEE 802.16 uses ODFM as its core technology, and is currently trying to expand market through commercialization. Therefore, if it's used for high speed moving object(KTX, airplane..etc) in near future, there is a possibility of ICI(inter-carrier interference) to occur due to DFS(Doppler Frequency Shift), a critical weak point of ODFM System. This study suggests 3 compensation techniques for Doppler effects in ODFM system operating through satellite, and confirms improved performance through constellation and BER curve.

  • PDF

Scanning Rayleigh Doppler Lidar for Wind Profiling Based on Non-polarized Beam Splitter Cube Optically Contacted FPI

  • Zheng, Jun;Sun, Dongsong;Chen, Tingdi;Zhao, Ruocan;Han, Yuli;Li, Zimu;Zhou, Anran;Zhang, Nannan
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • A Scanning Rayleigh Doppler lidar for wind profiling based on a non-polarized beam splitter cube optically contacted FPI is developed for wind measurement from high troposphere to low stratosphere in 5-35 km. Non-polarized beam splitter cube optically contacted to the FPI are used for a stable optical receiver. Zero Doppler shift correction is used to correct for laser or FPI frequency jitter and drift and the timing sequence is designed. Stability of the receiver for Doppler shift discrimination is validated by measuring the transmissions of FPI in different days and analyzed the response functions. The maximal relative wind deviation due to the stability of the optical receiver is about 4.1% and the standard deviation of wind velocity is 1.6% due to the stability. Wind measurement comparison experiments were carried out in Jiuquan ($39.741^{\circ}N$, $98.495^{\circ}E$), Gansu province of China in 2015, showing good agreement with radiosonde result data. Continuous wind field observation was performed from October 16th to November 12th and semi-continuous wind field of 19 nights are presented.

An ICI Canceling 5G System Receiver for 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • This paper proposed an Inter-Carrier-Interference (ICI) Canceling Orthogonal Frequency Division Multiplexing (OFDM) receiver for 5G mobile system to support 500 km/h linear motor high speed terrestrial transportation service. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceler is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number 𝒏 to receiver sub-carrier number 𝒍 is generated. In case of 𝒏≠𝒍, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 2 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, for modulation schemes below 16QAM, we confirmed that the difference between BER in a 2 path reverse Doppler shift environment and stationary environment at a moving speed of 500 km/h was very small when the number of taps in the multi-tap equalizer was set to 31 taps or more. We also confirmed that the BER performance in high-speed mobile communications for multi-level modulation schemes above 64QAM is dramatically improved by the use of a multi-tap equalizer.

UTLIZIATION OF RADARSAT FOR FORECASTING OIL SLICKT RAJECTORY MOVEMENT

  • Marghany, Maged
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.435-437
    • /
    • 2003
  • This study presents work to utilize RADARSAT SAR image for forecast oil slick trajectory movement. The fractal dimension algorithm used to detect oil slick. The Doppler frequency shift and quasi-linear model was used to simulate a current pattern from RADARSAT image. The Fay’s algorithm of oil slick spreading was developed based on a Doppler frequency shift model. Thus, the study shows that fractal dimension algorithm discriminated the oil slick from the surrounding water features. The quasi-linear model shows that the current pattern can be simulated from single RADARSAT image. The oil slick trajectory model shows that after 48 hrs, the oil slick parcels deposited along the coastal waters.

  • PDF

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

The Relation of Time Resolution and Radial Velocity Accuracy of a CW Doppler Radar (CW 도플러 레이더의 시각 분해능과 시선 속도 정확도의 관계)

  • Ryu, Chung-Ho;Jang, Yong-Sik;Choi, Ik-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.815-821
    • /
    • 2012
  • A CW Doppler radar can measure radial velocity of an object. It detects a Doppler frequency shift that is proportioned to radial velocity of a moving object. To detect a Doppler frequency shift, FFT(Fast Fourier Transform) is conducted. In this process, the time domain received signal is transformed to a frequency domain. A number of FFT affects not only the time resolution but also signal to noise ratio of received signal. So finally it is related with a radial velocity accuracy. Therefore in this paper, it is described the relation of time resolution and the radial velocity accuracy.

Development of Portable Arrhythmia Moniter Using Microcomputer(I) (마이크로 컴퓨터를 이용한 휴대용 부정맥 모니터의 개발(I)-하드웨어 설계를 중심으로-)

  • 이명호;안재봉
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.169-182
    • /
    • 1986
  • Pulsed ultrasonic Doppler system is a useful diagnostic instrument to measure blood-flow-velocity, velocity profile, and volume-blood-flow. This system is more powerful compare with 2-dimensional B-scan tissue image. A system has been deve- loped and ii being evaluated using TMS 32010 DSP. We use this DSP for the purpose of real-time spectrum analyzer to obtain spectrogram in singlegate pulsed Doppler system and for the serial comb filter to cancel clutter and zero crossing counter to estimate Doppler mean frequency in multigate pulsed Doppler system. The Doppler shift of the backscattered signals is sensed in a phase detector. This Doppler signal corresponds to the mean velocity over a some region in space defined by the ultrasonic beam dimensions, transmitted pulse duration, and transducer ban(iwidth. Multi- gate pulsed Doppler system enable the transcutaneous and simultaneous assessment of the velocities in a number of adjacent sample volumes as a continuous function of time. A multigate pulsed Doppler system processing the information originating from presented.

  • PDF

EXTENDED KALMAN FILTERING OF SATELLITE DOPPLER TRACKING DATA AND IT'S APPLICATION TO ORBIT DETERMINATION PROBLEMS (확장칼만필터를 이용한 인공위성 도플러 추적자료의 처리와 궤도 결정)

  • 김동규;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.143-156
    • /
    • 1995
  • Using a directional antenna, the Doppler effect of satellites can be detected and the orbital elements can be obtained by the Extended Kalman Filter with the observed frequency shift data. We obtained the orbital elements of NOAA-11 by the application of the Extended Kalman Filter type algorithm to the Doppler shift data of NOAA-11d and discussed the accuracy and the credibility of this algorithm.

  • PDF

Design of DubaiSAT-1 S-band Receiver RF block (DubaiSAT-1 위성용 S-band 수신기의 RF 블록 설계)

  • Park, In-Yong;Min, Seung-Hyun;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.178-182
    • /
    • 2011
  • A FSK receiver RF block has been developed for Dubaisat-1 Low Earth Orbit satellite. The receiver has Doppler tracking function which compensate frequency shift on uplink channel for commanding the satellite. It consist of LNA, downconverter and IF module. The IF module has Doppler tracking circuitry which sweep and lock on to input signal. It satisfies the requirement of the Dubaisat-1 in mass, power consumption, tracking speed and BER performance.