• 제목/요약/키워드: Doping controlled

검색결과 111건 처리시간 0.031초

An Analysis Study on the Doping Intentions of Athletes using Stepwise Regression Analysis

  • Youn-Suk Han;Jong-Hwa Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.171-177
    • /
    • 2023
  • 본 연구는 다양한 이론적 접근을 통해 진행되어왔던 선행연구들을 바탕으로 국내 엘리트 선수들의 도핑 의도에 영향을 미치는 요인들을 파악하기 위해 단계적 회귀분석을 활용하여 운동경력 및 도핑교육 경험과 같은 인구통계학적 요인들과 통제적 동기, 도핑방지에 대한 태도 및 행동통제인식 요인과 도핑 의도의 관계를 규명함으로써 도핑방지에 중요한 정보를 제공하는데 목적이 있다. 연구의 목적을 달성하기 위해 SPSS 27.0 ver을 사용하여 분석하였다. 상관분석과 단계선택 회귀분석 사용하여 도출된 연구결과는 다음과 같다. 운동경력, 도핑 교육 경험 유·무, 통제적 동기, 도핑방지에 대한 태도 및 행동통제인식 요인 모두 도핑의도에 유의한 영향을 미치는 것으로 확인되었으며 이 중 영향력이 가장 큰 변인들을 각 순서대로 투입하여 유의한 영향이 있는지 검증하였다. 검증 결과 통제 동기가 가장 큰 영향을 미치는 것으로 나타났다. 다음으로는 도핑에 대한 행동통제인식, 도핑 교육 경험 유·무, 도핑에 대한 태도, 운동경력 순서대로 영향을 미치는 것을 확인하였다.

Effect of Doping State on Photoresponse Properties of Polypyrrole

  • Choi, Jongwan
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.250-253
    • /
    • 2021
  • Polypyrrole is an organic thermoelectric material which has been receiving extensive attention in recent years. Polypyrrole is applicable in various fields because its electrical properties are controllable by its doping concentration. In this study, the effects of the polypyrrole doping state on its photoresponse were investigated. The degree of doping was controlled by ammonia solution treatment. Then, the chemical structure as a function of the doping states was observed by Raman analysis. Moreover, the photocurrent and photovoltage characteristics for various doping states were measured by an asymmetrically irradiated light source. As the degree of doping increased, the electrical conductivity increased, which affected the photocurrent. Meanwhile, the photovoltage was related to the temperature gradient caused by light irradiation.

Hot-Walled PLD를 이용한 ZnO 나노와이어의 도핑 제어 (Doping Control in ZnO Nanowires Employing Hot-Walled Pulsed Laser Deposition)

  • 김경원;이세한;송용원;김상식;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.5-5
    • /
    • 2008
  • We design and demonstrate the controled doping into ZnO nanowires (NWs) adopting self-contrived hot-walled pulsed laser deposition (HW-PLD). Optimized synthesis conditions with the diversified dopants guarantee the excellent crystalinity and morphology as well as electrical properties of the NWs. Proprietary target rotating system in the HW-PLD fuels the controlled formation and doping of the NWs. Prepared NWs sensitive to the environment are systematically characterized, and the doping mechanism is discussed.

  • PDF

New approaches towards highly efficient OLED

  • Reineke, S.;Meerheim, R.;Huang, Q.;Schwartz, G.;Lussem, B.;Leo, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1216-1219
    • /
    • 2009
  • Recently,electroluminescence devices based on organic semiconductors have made considerable progress. Displays based on organic light emitting diodes (OLED) are commercially available. To gain broader acceptance, the performance of OLED devices has to be further improved, in particular for lighting. This article discusses the possibility to use controlled electrical doping for improving the properties of devices and new approaches for highly efficient white OLED.

  • PDF

Nitrogen Doping in Polycrystalline Anatase TiO2 Ceramics by Atmosphere Controlled Firing

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.374-386
    • /
    • 2019
  • A process for nitrogen doping of TiO2 ceramics was developed, whereby polycrystalline titania particles were prepared at 450-1000℃ with variation of the firing schedule under N2 atmosphere. The effect of nitrogen doping on the polycrystallites was investigated by X-ray diffraction (XRD) and Raman analysis. The microstructure of the TiO2 ceramics changed with variation of the firing temperature and the firing atmosphere (N2 or O2). The microstructural changes in the nitrogen-doped TiO2 ceramics were closely related to changes in the Raman spectra. Within the evaluated temperature range, the nitrogen-doped titania ceramics comprised anatase and/or rutile phases, similar to those of titania ceramics fired in air. Infiltration of nitrogen gas into the titania ceramics was analyzed by Raman spectroscopy and XRD analysis, showing a considerable change in the profiles of the N2-doped TiO2 ceramics compared with those of the TiO2 ceramics fired under O2 atmosphere. The nitrogen doping in the anatase phase may produce active sites for photocatalysis in the visible and ultraviolet regions.

저압 CVD에 의한 $Si_{0.8}Ge_{0.2}$ epitaxial growth에 대한 Phosphorus doping 효과 (Phosphorus doping effect on $Si_{0.8}Ge_{0.2}$ epitaxial growth by LPCVD)

  • 이철진;엄문종;성만영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.314-316
    • /
    • 1997
  • We have studied the epitaxial growth and electrical properties of $Si_{0.8}Ge_{0.2}$, films on Si substrates at $550^{\circ}C$ by LPCVD. In a low $PH_3$, partial pressure region such as below 1.25 mPa, the phosphorus doping concentration increased proportionally with increasing $PH_3$ partial pressure while the deposition rate and the Ge fraction x were constant. In a higher $PH_3$ partial pressure region, the phosphorus doping concentration and the deposition rate decreased, while the Ge fraction slightly increased. The dependence of P incorporation rate on the $PH_3$ partial pressure was similar to the phosphorus doping concentration. According to test results, it suggests that high surface coverage of phosphorus atoms suppress both the $SiH_4$ adsorption/reaction and the $GeH_4$ adsorption/reaction on the surfaces, and the effect is more stronger on $SiH_4$ than on $GeH_4$. In a higher $PH_3$ partial pressure region, the deposition is largely controlled by surface coverage effect of phosphorus atoms.

  • PDF

Thermoelectric and Transport Properties of FeV1-xTixSb Half-Heusler System Synthesized by Controlled Mechanical Alloying Process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.725-732
    • /
    • 2018
  • The thermoelectric and transport properties of Ti-doped FeVSb half-Heusler alloys were studied in this study. $FeV_{1-x}Ti_xSb$ (0.1 < x < 0.5) half-Heusler alloys were synthesized by mechanical alloying process and subsequent vacuum hot pressing. After vacuum hot pressing, a near singe phase with a small fraction of second phase was obtained in this experiment. Investigation of microstructure revealed that both grain and particle sizes were decreased on doping which would influence on thermal conductivity. No foreign elements pick up from the vial was seen during milling process. Thermoelectric properties were investigated as a function of temperature and doping level. The absolute value of Seebeck coefficient showed transition from negative to positive with increasing doping concentrations ($x{\geq}0.3$). Electrical conductivity, Seebeck coefficient and power factor increased with the increasing amount of Ti contents. The lattice thermal conductivity decreased considerably, possibly due to the mass disorder and grain boundary scattering. All of these turned out to increase in power factor significantly. As a result, the thermoelectric figure of merit increased comprehensively with Ti doping for this experiment, resulting in maximum thermoelectric figure of merit for $FeV_{0.7}Ti_{0.3}Sb$ at 658 K.

Effect of Sn Doping on the Thermoelectric Properties of P-Type Mg3Sb2 Synthesized by Controlled Melting, Pulverizing Followed by Vacuum Hot Pressing

  • Rahman, Md. Mahmudur;Kim, Il-Ho;Ur, Soon-Chul
    • 한국재료학회지
    • /
    • 제32권3호
    • /
    • pp.132-138
    • /
    • 2022
  • Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.

Effects of 4MP Doping on the Performance and Environmental Stability of ALD Grown ZnO Thin Film Transistor

  • Kalode, Pranav Y.;Sung, M.M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.471-471
    • /
    • 2013
  • Highly stable and high performance amorphous oxide semiconductor thin film transistors (TFTs) were fabricated using 4-mercaptophenol (4MP) doped ZnO by atomic layer deposition (ALD). The 4 MP concentration in ZnO films were varied from 1.7% to 5.6% by controlling Zn: 4MP pulses. The carrier concentrations in ZnO thin films were controlled from $1.017{\times}10^{20}$/$cm^3$ to $2,903{\times}10^{14}$/$cm^3$ with appropriate amount of 4MP doping. The 4.8% 4MP doped ZnO TFT revealed good device mobility performance of $8.4cm^2V-1s-1$ and on/off current ratio of $10^6$. Such 4MP doped ZnO TFTs were stable under ambient conditions for 12 months without any apparent degradation in their electrical properties. Our result suggests that 4 MP doping can be useful technique to produce more reliable oxide semiconductor TFT.

  • PDF

Effects of metal contacts and doping for high-performance field-effect transistor based on tungsten diselenide (WSe2)

  • Jo, Seo-Hyeon;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.294.1-294.1
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with two-dimensional layered structure, such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), are considered attractive materials for future semiconductor devices due to its relatively superior electrical, optical, and mechanical properties. Their excellent scalability down to a monolayer based on the van der Waals layered structure without surface dangling bonds makes semiconductor devices based on TMD free from short channel effect. In comparison to the widely studied transistor based on MoS2, researchs focusing on WSe2 transistor are still limited. WSe2 is more resistant to oxidation in humid ambient condition and relatively air-stable than sulphides such as MoS2. These properties of WSe2 provide potential to fabricate high-performance filed-effect transistor if outstanding electronic characteristics can be achieved by suitable metal contacts and doping phenomenon. Here, we demonstrate the effect of two different metal contacts (titanium and platinum) in field-effect transistor based on WSe2, which regulate electronic characteristics of device by controlling the effective barreier height of the metal-semiconductor junction. Electronic properties of WSe2 transistor were systematically investigated through monitoring of threshold voltage shift, carrier concentration difference, on-current ratio, and field-effect mobility ratio with two different metal contacts. Additionally, performance of transistor based on WSe2 is further enhanced through reliable and controllable n-type doping method of WSe2 by triphenylphosphine (PPh3), which activates the doping phenomenon by thermal annealing process and adjust the doping level by controlling the doping concentration of PPh3. The doping level is controlled in the non-degenerate regime, where performance parameters of PPh3 doped WSe2 transistor can be optimized.

  • PDF