• Title/Summary/Keyword: Doped Oxide

검색결과 1,022건 처리시간 0.024초

Crystallization and Electrical Properties of Doped and Undoped Indium Oxide Films

  • Kamei, Masayuki;Akao, Hirotaka;Song, Pung Keun;Yasui, Itaru;Shigesato, Yuzo
    • The Korean Journal of Ceramics
    • /
    • 제6권2호
    • /
    • pp.107-109
    • /
    • 2000
  • The crystallization process and the electrical properties of amorphous tin-doped indium oxide (ITO) films have been studied in contrast with those of undoped indium oxide (IO) films. Amorphous ITO and IO films were prepared by magnetron sputtering succeeded by annealing in the air at various temperatures. ITO films showed higher crystallization temperature compared with that of IO films, suggesting an excess free energy caused by the repulsion between the active donors ($Sn^{4+}$). The analysis of the electrical properties alternated with the phased annealing of films provided essential information for understanding the conduction mechanisms of ITO. It was also revealed that the amorphous IO/ITO films showed oxidation around $100^{\circ}C$ in contrast with crystalline IO/ITO films with the oxidation temperature above $200^{\circ}C$.

  • PDF

플라스틱 기판에 증착한 ZnO:Al 박막의 특성에 미치는 스퍼터 압력 효과 (Effects of Sputter Pressure on the Properties of Sputtered ZnO:Al Films Deposited on Plastic Substrate)

  • 이재형
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.277-283
    • /
    • 2009
  • In this paper, aluminum doped zinc oxide (ZnO:Al) thin films on plastic substrate such as poly carbonate (PC), polyethylene terephthalate (PET) were prepared by RF magnetron sputtering method for flexible solar cell applications. Effects of the sputter pressure on the structural, electrical and optical properties were investigated. The crystallinity and the degree of the (002) orientation were deteriorated with increasing the sputter pressure. When the sputter pressure was higher, the conductivity of ZnO:Al films was improved because of the high carrier concentration and the Hall mobility. High quality ZnO:Al films with resistivity as low as $1.9{\times}10^{-3}{\Omega}-cm$ and the optical transmittance over 80 % in the visible region have been obtained on PC substrate at 2 mTorr.

투명접합을 이용한 이종 태양전지 (Transparent conductive oxide layers-embedding heterojunction Si solar cells)

  • 윤주형;김민건;박윤창;;김준동
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An improved crystalline indium-tin-oxide (ITO) film was grown on an Al-doped ZnO (AZO) template upon hetero-epitaxial growth. This double TCO-layered Si solar cell provided significantly enhanced efficiency of 9.23 % as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides a good interface, resulting in the enhanced photovoltaic performances. It discusses TCO film arrangement scheme for efficient TCO-layered heterojunction solar cells.

  • PDF

Doping-free Transparent Conducting Schottky Type Heterojunction Solar Cells

  • Kim, Joon-Dong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.209-209
    • /
    • 2012
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An additional doping was not applied for heterojunction solar cells due to the spontaneous junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedding Si heterojunction solar cell provided significantly enhanced efficiency of 9.23% as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme of the effective TCO film-embedding heterojunction Si solar cells.

  • PDF

Effects of Low-Temperature Sintering on Varistor Properties and Stability of VMCDNB-Doped Zinc Oxide Ceramics

  • Nahm, Choon-W.
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.84-90
    • /
    • 2019
  • The varistor properties and stability against dc-accelerated stress of $V_2O_5-Mn_3O_4-Co_3O_4-Dy_2O_3-Nb_2O_5-Bi_2O_3$ (VMCDNB)-doped zinc oxide ceramics sintered at $850-925^{\circ}C$ were investigated. Increasing the sintering temperature increased the average grain size from 4.6 to 8.7 mm and decreased the density of the sintered pellet density from 5.54 to $5.42g/cm^3$. The breakdown field decreased from 5919 to 1465 V/cm because of the increase in the average grain size. Zinc oxide ceramics sintered at $875^{\circ}C$ showed the highest nonlinear coefficient (43.6) and the highest potential barrier height (0.96 eV). Zinc oxide ceramics sintered at $850^{\circ}C$ showed the highest stability: the variation rate of the breakdown field was -2.0% and the variation rate of the nonlinear coefficient was -23.3%, after application of the specified stress (applied voltage/temperature/time).

초음파 화학 반응을 이용한 WOx 도핑 TiO2 광촉매 나노 분말의 합성 (WOx Doped TiO2 Photocatalyst Nano Powder Produced by Sonochemistry Method)

  • 조성훈;이수완
    • 한국재료학회지
    • /
    • 제21권2호
    • /
    • pp.83-88
    • /
    • 2011
  • Nano-technology is a super microscopic technology to deal with structures of 100 nm or smaller. This technology also involves the developing of $TiO_2$ materials or $TiO_2$ devices within that size. The aim of the present paper is to synthesize $WO_x$ doped nano-$TiO_2$ by the Sonochemistry method and to evaluate the effect of different percentages (0.5-5 wt%) of tungsten oxide load on $TiO_2$ in methylene blue (MB) elimination. The samples were characterized using such different techniques as X-ray diffraction (XRD), TEM, SEM, and UV-VIS absorption spectra. The photo-catalytic activity of tungsten oxide doped $TiO_2$ was evaluated through the elimination of methylene blue using UV-irradiation (315-400nm). The best result was found with 5 wt% $WO_x$ doped $TiO_2$. It has been confirmed that $WO_x-TiO_2$ could be excited by visible light (E<3.2 eV) and that the recombination rate of electrons/holes in $WO_x-TiO_2$ declined due to the existence of $WO_x$ doped in $TiO_2$.

P형 in-situ 도핑 폴리실리콘 막질에 관한 연구 (Study on P-type in-situ doped Polysilicon Films)

  • 오정섭;이상은;노진태;이상우;배경성;노용한
    • 한국전기전자재료학회논문지
    • /
    • 제21권3호
    • /
    • pp.208-212
    • /
    • 2008
  • This paper reports physical properties of in situ boron doped silicon films made from boron source gas and silane ($SiH_4$) gas in a conventional low-pressure chemical vapor deposition vertical furnace. If the p-type polysilicon is formed by boron implantation into undoped polysilicon, the plasma nitridation (PN) process is added on the oxide in order to suppress boron penetration that can be caused during the thermal treatments used in fabrication. In-situ boron doped polysilicon deposition can complete p-type polysilicon film with only one deposition process and need not the PN process, because there is not interdiffusion of dopant at the intermediate temperatures of the subsequent steps. Since in-situ boron doped polysilicon films have higher work function than that of n-type polysilicon and they are compatible with the underlying oxide, they may be promising materials for improving memory cell characteristics if we make its profit of these physical properties.

초음파분무 열분해법을 이용한 고체산화물 연료전지용 세리아계 복합체 전해질의 제조 및 특성 (Synthesis and Characterization of a Ceria Based Composite Electrolyte for Solid Oxide Fuel Cells by an Ultrasonic Spray Pyrolysis Process)

  • 이영인;좌용호
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.222-228
    • /
    • 2014
  • Much research into fuel cells operating at a temperature below $800^{\circ}C$. is being performed. There are significant efforts to replace the yttria-stabilized zirconia electrolyte with a doped ceria electrolyte that has high ionic conductivity even at a lower temperature. Even if the doped ceria electrolyte has high ionic conductivity, it also shows high electronic conductivity in a reducing environment, therefore, when used as a solid electrolyte of a fuel cell, the powergeneration efficiency and mechanical properties of the fuel cell may be degraded. In this study, gadolinium-doped ceria nanopowder with $Al_2O_3$ and $Mn_2O_3$ as a reinforcing and electron trapping agents were synthesized by ultrasonic pyrolysis process. After firing, their microstructure and mechanical and electrical properties were investigated and compared with those of pure gadolinium-doped ceria specimen.

DC 마그네트론 스퍼터링에 의해 증착한 AZO 박막의 특성 (Characterization of AI-doped ZnO Films Deposited by DC Magnetron Sputtering)

  • 박이섭;이승호;송풍근
    • 한국표면공학회지
    • /
    • 제40권3호
    • /
    • pp.107-112
    • /
    • 2007
  • Aluminum doped zinc oxide (AZO) films were deposited on non-alkali glass substrate by DC magnetron sputtering with 3 types of AZO targets (doped with 1.0 wt%, 2.0 wt%, 3.0 wt% $Al_2O_3$). Electrical, optical properties and microstructure of AZO films have been investigated by Hall effect measurements, UV/VIS/NIR spectrophotometer, and XRD, respectively. Crystallinity of AZO films increased with increasing substrate temperature ($T_s$) and doping ratio of Al. Resistivity and optical transmittance in visible light were $8.8{\times}10^{-4}{\Omega}cm$ and above 85%, respectively, for the AZO film deposited using AZO target (doped with 3.0 wt% $Al_2O_3$) at $T_s$ of $300^{\circ}C$. On the other hand, transmittance of AZO films in near-infrared region decreased with increasing $T_s$ and doping ratio of Al, which could be attributed to the increase of carrier density.