• Title/Summary/Keyword: Dopaminergic Neurons

Search Result 123, Processing Time 0.036 seconds

Coadministration of 6-Shogaol and Levodopa Alleviates Parkinson's Disease-Related Pathology in Mice

  • Jin Hee Kim;Jin Se Kim;In Gyoung Ju;Eugene Huh;Yujin Choi;Seungmin Lee;Jun-Young Cho;Boyoung Y. Park;Myung Sook Oh
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.523-530
    • /
    • 2024
  • Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the nigrostriatal pathway, leading to motor and non-motor dysfunctions, such as depression, olfactory dysfunction, and memory impairment. Although levodopa (L-dopa) has been the gold standard PD treatment for decades, it only relieves motor symptoms and has no effect on non-motor symptoms or disease progression. Prior studies have reported that 6-shogaol, the active ingredient in ginger, exerts a protective effect on dopaminergic neurons by suppressing neuroinflammation in PD mice. This study investigated whether cotreatment with 6-shogaol and L-dopa could attenuate both motor and non-motor symptoms and dopaminergic neuronal damage. Both 6-shogaol (20 mg/kg) and L-dopa (80 mg/kg) were orally administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced PD model mice for 26 days. The experimental results showed that L-dopa alleviated motor symptoms, but had no significant effect on non-motor symptoms, loss of dopaminergic neuron, or neuroinflammation. However, when mice were treated with 6-shogaol alone or in combination with L-dopa, an amelioration in both motor and non-motor symptoms such as depression-like behavior, olfactory dysfunction and memory impairment was observed. Moreover, 6-shogaol-only or co-treatment of 6-shogaol with L-dopa protected dopaminergic neurons in the striatum and reduced neuroinflammation in the striatum and substantia nigra. Overall, these results suggest that 6-shogaol can effectively complement L-dopa by improving non-motor dysfunction and restoring dopaminergic neurons via suppressing neuroinflammation.

Asiatic Acid Protects Dopaminergic Neurons from Neuroinflammation by Suppressing Mitochondrial ROS Production

  • Chen, Dong;Zhang, Xiao-Ya;Sun, Jing;Cong, Qi-Jie;Chen, Wei-Xiong;Ahsan, Hafiz Muhammad;Gao, Jing;Qian, Jin-Jun
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.442-449
    • /
    • 2019
  • This study sought to evaluate the effects of Asiatic acid in LPS-induced BV2 microglia cells and 1-methyl-4-phenyl-pyridine ($MPP^+$)-induced SH-SY5Y cells, to investigate the potential anti-inflammatory mechanisms of Asiatic acid in Parkinson's disease (PD). SH-SY5Y cells were induced using $MPP^+$ to establish as an in vitro model of PD, so that the effects of Asiatic acid on dopaminergic neurons could be examined. The NLRP3 inflammasome was activated in BV2 microglia cells to explore potential mechanisms for the neuroprotective effects of Asiatic acid. We showed that Asiatic acid reduced intracellular production of mitochondrial reactive oxygen species and altered the mitochondrial membrane potential to regulate mitochondrial dysfunction, and suppressed the NLRP3 inflammasome in microglia cells. We additionally found that treatment with Asiatic acid directly improved SH-SY5Y cell viability and mitochondrial dysfunction induced by $MPP^+$. These data demonstrate that Asiatic acid both inhibits the activation of the NLRP3 inflammasome by downregulating mitochondrial reactive oxygen species directly to protect dopaminergic neurons from, and improves mitochondrial dysfunction in SH-SY5Y cells, which were established as a model of Parkinson's disease. Our finding reveals that Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing NLRP3 inflammasome activation in microglia cells as well as protecting dopaminergic neurons directly. This suggests a promising clinical use of Asiatic acid for PD therapy.

Neuroprotection of Dopaminergic Neurons by Hominis Placenta Herbal Acupuncture in in vitro and in vivo Models of Parkinson's Disease Induced by MPP+/MPTP Toxicity

  • Jun, Hyung Joon;Nam, Sang Soo;Kim, Young Suk
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.23-36
    • /
    • 2015
  • Objectives : This study was designed to investigate the neuroprotective effects of Hominis-Placenta (HP)on dopaminergic neurons. Methods : We examined the effect of invitro administration of HP against 1-methyl-4-phenylpyridinium( MPP+)-induced dopaminergic cell loss in primary mesencephalic culture and also used behavioral tests and performed analysis in the striatum and the substantia nigra of mouse brain, to confirm the effect of HP on dopaminergic neurons in an invivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mouse model. Animals were assigned to four groups: (1) Group 1(vehicle-treatedgroup), (2) Group 2(MPTPonlytreated group), (3) Group 3(MPTP+ saline-treated/$ST_{36}$ group), and (4) Group 4(MPTP+HP-treated/$ST_{36}$ group). HP at $20{\mu}L$ of 48 mg/kg dose was injected at $ST_{36}$ for 4 weeks at 2-day intervals. MPTP in saline was injected intraperitoneally each day for 5 days from the $8_{th}$ treatment of HP. We performed the pole test and rota-rod test on the first and seventh day after the last MPTP injection. To investigate the effect of HP on dopaminergic neurons, we performed analysis in the striatum and the substantia nigra of mouse brain after treatment with HP and/or MPTP. Results : Treatment with HP had no influence on cell proliferation and caused no cell toxicity in $PC_{12}$ and $HT_{22}$ cells. Our study showed that HP significantly prevented cell loss and protected neurites against MPP+ toxicity. Although the invivo treatment of HP herbal acupuncture at $ST_{36}$ showed a tendency to improve movement ability and protected dopaminergic cells and fibers in the substantia nigra and the striatum, it did not show significant changes compared with the MPTP treated group. Conclusions : These data suggest that HP could be a potential treatment strategy in neurodegenerative diseases such as Parkinson's disease.

Neuroprotective Effects of Banryong-hwan in Primary Rat Mesencephalic Dopaminergic Neurons (반룡환의 흰쥐태아중뇌에서의 도파민세포 보호효과)

  • Ju, Mi-Sun;Kim, Hyo-Guen;Shim, Jin-Sup;Oh, Myung-Sook
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.53-60
    • /
    • 2008
  • Objectives : Oxidative stress has a critical role in neurodegenerative diseases. In this study, we investigated the antioxidant and neuroprotective effects of the ethanolic extract of Banryong-hwan (BRHE) in SH-SY5Y cells and primary rat mesencephalic dopaminergic neurons. Methods : To assess the antioxidant effects, we carried out 1,1-diphenyl-2-picrylhydrazyl(DPPH) free radical scavenging assay, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) radical cation decolorization assay, and determination of total polyphenolic content. We evaluated the effect of BRHE treatment on neuroprotection against 6-hydroxydopamine(6-OHDA) toxicity using thiazolyl blue tetrazolium bromide(MTT) assay, nitric oxide(NO) assay, reactive oxygen species(ROS) assay in SH-SY5Y cells and tyrosine hydroxylase(TH) immunocytochemistry in primary rat mesencephalic dopaminergic neurons. Results : BRHE showed IC50 values of 328.10 ${\mu}g/mL$ and 43.12 ${\mu}g/mL$ in DPPH assay and in ABTS assay, respectively. Total polyphenolic content was 180.76 ${\mu}g/mL$. In SH-SY5Y cells, BRHE significantly attenuated the toxicity induced by 6-OHDA at the concentrations of 25-100 ${\mu}g/mL$ pre- and post- treatment in MTT assay. While 6-OHDA increased the NO and ROS contents, BRHE decreased them in a dose dependent manner. Moreover, in primary dopaminergic neuron culture, BRHE significantly protect-ed the dopaminergic cell loss against 6-OHDA toxicity up to 136% at the concentration of 75 ${\mu}g/mL$. Conclusions : These results demonstrate that BRHE has neuroprotective effect against 6-OHDA induced neurotoxicity through decreasing NO and ROS generation.

  • PDF

Efficient Generation of Dopaminergic Neurons from Mouse Ventral Midbrain Astrocytes

  • Jin Yi Han;Eun-Hye Lee;Sang-Mi Kim;Chang-Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.264-275
    • /
    • 2023
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by tremors, bradykinesia, and rigidity. PD is caused by loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN) and therefore, replenishment of DA neurons via stem cell-based therapy is a potential treatment option. Astrocytes are the most abundant non-neuronal cells in the central nervous system and are promising candidates for reprogramming into neuronal cells because they share a common origin with neurons. The ability of neural progenitor cells (NPCs) to proliferate and differentiate may overcome the limitations of the reduced viability and function of transplanted cells after cell replacement therapy. Achaete-scute complex homolog-like 1 (Ascl1) is a well-known neuronal-specific factor that induces various cell types such as human and mouse astrocytes and fibroblasts to differentiate into neurons. Nurr1 is involved in the differentiation and maintenance of DA neurons, and decreased Nurr1 expression is known to be a major risk factor for PD. Previous studies have shown that direct conversion of astrocytes into DA neurons and NPCs can be induced by overexpression of Ascl1 and Nurr1 and additional transcription factors genes such as superoxide dismutase 1 and SRY-box 2. Here, we demonstrate that astrocytes isolated from the ventral midbrain, the origin of SN DA neurons, can be effectively converted into DA neurons and NPCs with enhanced viability. In addition, when these NPCs are inducted to differentiate, they exhibit key characteristics of DA neurons. Thus, direct conversion of midbrain astrocytes is a possible cell therapy strategy to treat neurodegenerative diseases.

Systemic and Cell-Type Specific Profiling of Molecular Changes in Parkinson's Disease

  • Lee, Yunjong
    • Interdisciplinary Bio Central
    • /
    • v.4 no.3
    • /
    • pp.6.1-6.12
    • /
    • 2012
  • Parkinson's disease (PD) is a complicated neurodegenerative disorder although it is oftentimes defined by clinical motor symptoms originated from age dependent and progressive loss of dopaminergic neurons in the midbrain. The pathogenesis of PD involves dopaminergic and nondopaminergic neurons in many brain regions and the molecular mechanisms underlying the death of different cell types still remain to be elucidated. There are indications that PD causing disease processes occur in a global scale ranging from DNA to RNA, and proteins. Several PD-associated genes have been reported to play diverse roles in controlling cellular functions in different levels, such as chromatin structure, transcription, processing of mRNA, translational modulation, and posttranslational modification of proteins. The advent of quantitative high throughput screening (HTS) tools makes it possible to monitor systemic changes in DNA, RNA and proteins in PD models. Combined with dopamine neuron isolation or derivation of dopamine neurons from PD patient specific induced pluripotent stem cells (PD iPSCs), HTS techonologies will provide opportunities to draw PD causing sequences of molecular events in pathologically relevant PD samples. Here I discuss previous studies that identified molecular functions in which PD genes are involved, especially those signaling pathways that can be efficiently studied using HTS methodologies. Brief descriptions of quantitative and systemic tools looking at DNA, RNA and proteins will be followed. Finally, I will emphasize the use and potential benefits of PD iPSCs-derived dopaminergic neurons to screen signaling pathways that are initiated by PD linked gene mutations and thus causative for dopaminergic neurodegneration in PD.

Impaired Taste Associative Memory and Memory Enhancement by Feeding Omija in Parkinson's Disease Fly Model

  • Poudel, Seeta;Lee, Youngseok
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.646-652
    • /
    • 2018
  • Neurodegeneration can result in memory loss in the central nervous system (CNS) and impairment of taste and smell in the peripheral nervous system (PNS). The neurodegeneration seen in Parkinson's disease (PD) is characterized by functional loss of dopaminergic neurons. Recent studies have also found a role for dopaminergic neurons in regulating taste memory rewards in insects. To investigate how taste memories and sugar sensitivity can be affected in PD, we utilized the $DJ-1{\beta}$ mutant fruit fly, $DJ-1{\beta}^{ex54}$, as a PD model. We performed binary choice feeding assays, electrophysiology and taste-mediated memory tests to explore the function of the $DJ-1{\beta}$ gene in terms of sugar sensitivity as well as associative taste memory. We found that PD flies exhibited an impaired ability to discriminate sucrose across a range of sugar concentrations, with normal responses at only very high concentrations of sugar. They also showed an impairment in associative taste memory. We highlight that the taste impairment and memory defect in $DJ-1{\beta}^{ex54}$ can be recovered by the expression of wild-type $DJ-1{\beta}$ gene in the dopaminergic neurons. We also emphasized the role of dopaminergic neurons in restoring taste memory function. This impaired memory property of $DJ-1{\beta}^{ex54}$ flies also allows them to be used as a model system for finding supplementary dietary foods that can improve memory function. Here we provide evidence that the associative taste memory of both control and $DJ-1{\beta}^{ex54}$ flies can be enhanced with dietary supplementation of the medicinal plant, omija.

Molecular Mechanism of Parkinson's Disease

  • Chung, Jong-Kyeong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.49-52
    • /
    • 2008
  • Parkinson's disease is characterized by motor disturbances and dopaminergic neurodegeneration. parkin and PINK1, two most critical Parkinson's disease-associated genes, have been intensively studied to address the underlying molecular pathogenesis of the disease, but our understanding still remains unclear. Through generation and characterization of Drosophila mutants for PINK1, we show that PINK1 is required for mitochondrial integrity and function in both indirect flight muscles and dopaminergic neurons. Surprisingly, we find that PINK1 mutants share striking phenotypic similarities with parkin mutants. Indeed, transgenic expression of parkin dramatically ameliorates all PINK1 loss-of-function phenotypes, but not vice versa, implicating that Parkin acts downstream of PINK1 in maintaining mitochondrial integrity and function in both muscles and dopaminergic neurons. With the establishment of the PINK1-Parkin pathway, we are trying to further investigate the detailed molecular relationship between PINK1 and Parkin using both mammalian dopaminergic neuronal cells for biochemical analysis and Drosophila model animal for genetic analysis. We believe that elucidating the molecular function of Parkinson's disease-associated genes will be of big help for the ultimate understanding of the pathogenic mechanism of this disease and also for the development of effective drugs for Parkinson's disease.

  • PDF

Transforming Growth Factor-$\alpha$ Increases the Yield of Functional Dopaminergic Neurons from in vitro Differentiated Human Embryonic Stem Cells Induced by Basic Fibroblast Growth Factor

  • Lee, Keum-Sil;Shin, Hyun-Ah;Cho, Hwang-Yoon;Kim, Eun-Young;Lee, Young-Jae;Wang, Kyu-Chang;Kim, Yong-Sik;Lee, Hoon-Taek;Chung, Kil-Saeng
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.102-102
    • /
    • 2003
  • Embryonic stem (ES) cells proliferate extensively in the undifferentiated state and have the potential to differentiate into a variety of cell types in response to various environmental cues. The generation of functional dopaminergic neurons from ES cells is promising for cell replacement therapy to treat Parkinson's disease. We compared the in vitro differentiation potential of pluripotent human embryonic stem (hES, MB03) cells induced with basic fibroblast growth factor (bFGF) or retinoic acid (RA). Both types of treatment resulted in similar neural cell differentiation patterns at the terminal differentiation stage, specifically, 75% neurons and 11% glial cells. Additionally, treatment of hES cells with brain derived neurotrophic factor (BDNF) or transforming growth factor (TGF)- $\alpha$ during the terminal differentiation stage led to significantly increased tyrosine hydroxylase (TH) expression, compared to control (P<0.05). In contrast, no effect was observed on the rate of mature or glutamic acid decarboxylase-positive neurons. Immunostaining and HPLC analyses revealed the higher levels of TH (20.3%) and dopamine in bFGF and TGF-$\alpha$ treated hES cells than in RA or BDNF treated hES cells. The results indicate that TGF-$\alpha$ may be successfully used in the bFGF induction protocol to yield higher numbers of functional dopaminergic neurons from hES cells.

  • PDF

Protective Effects of Nelumbinis Semen Against Neurotoxicity fuduced by 6-Hydroxydopamine in Dopaminergic Cells (연자육의 6-하이드록시도파민으로 유도된 도파민 세포 독성에 대한 보호효과)

  • Kim, Hyo-Geun;Oh, Myung-Sook
    • The Korea Journal of Herbology
    • /
    • v.24 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • Objectives : This study was performed to evaluate the neuroprotective effect of water extracts from Nelumbinis semen (NSW) in dopaminergic cells. Methods : We performed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, 2,2-azinobis3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) cation scavenging assay, and determination of total polyphenolic content to examine the antioxidant effects of NSW. We also evaluated the neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced toxicity using 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide assay (MIT) assay, trypan blue cytotoxicity assay, and nitric oxide assay in SH-SY5Y cells and tyrosine hydroxylase (TH) immunohistochemistry in primary rat dopaminergic neurons. Results : NSW showed $IC_{50}$ values of 184.80 and 92.90 ${\mu}$g/mL in DPPH and in ABTS assays, respectively. NSW showed 1.05% of total polyphenol contents. NSW showed protective effect against 6-0HDA-induced neurotoxicity whereas no influence on cell viability at the concentration of 1${\sim}$50 ${\mu}$g/mL. NSW reduced NO generation while 6-OHDA produced it. Moreover, it protected rat dopaminergic neurons against 6-0HDA at a dose of 1 ${\mu}$g/mL. Conclusions : These results indicated that NSW has neuroprotective effect against 6-0HDA-induced neurotoxicity through antioxidant activity in dopaminergic cell culture.