• Title/Summary/Keyword: Dopamine and metabolites

Search Result 41, Processing Time 0.024 seconds

Effect of Hypoxia-Ischemia on Striatal Monoamine Metabolism in Neonatal Rat Brains (저산소-허혈 손상이 신생 흰쥐의 뇌 선조체(Striatum) Monoamine 대사에 미치는 영향)

  • Jee, Youn Hee;Kim, Hyung Gun;Park, Woo Sung;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.8
    • /
    • pp.789-794
    • /
    • 2003
  • Purpose : We intended to evaluate the effect of hypoxia-ischemia on extracellular striatal monoamine metabolism in neonatal rat brains by in vivo microdialysis. Methods : The right common carotid arteries of five or six-day old rats were surgically ligated, and the probes for microdialysis were inserted into the right striatum with stereotaxic instrument. After stabilization for two hours, artificial cerebrospinal fluid was infused via the probe for microdialysis and samples were collected during hypoxia-ischemia and recovery periods at 20 minute intervals. The concentrations of DA(dopamine), DOPAC(3,4-di-hydroxyphenyl acetic acid), HVA(homovanillic acid), NE(norepinephrine), and 5-HIAA(5-hydroxy indole-acetic acid) were measured by HPLC(high performance liquid chromatography) and the changes were analysed. Results : The striatal levels of dopamine metabolites such as DOPAC and HVA, were significantly decreased during hypoxia-ischemia, and increased to their basal level during reoxygenation(P<0.05). Dopamine mostly increased during hypoxia but statistically not significant(P>0.05). DOPAC showed the most remarkable decrease($23.0{\pm}4.2%$, P<0.05), during hypoxia-ischemia and increase to the basal levels during reoxygenation($120.8{\pm}54.9%$, P<0.05), and HVA showed the same pattern of changes as those of DOPAC during hypoxia-ischemia($35.3{\pm}7.6%$ of basal level, P<0.05) and reoxygenation ($105.8{\pm}32.3%$). However, the level of NE did not show significant changes during hypoxia-ischemia and reoxygenation. The levels of 5-HIAA decreased($74.9{\pm}3.1%$) and increased($118.1{\pm}7.8%$) during hypoxia-ischemia and reoxygenation, respectively(P<0.005). Conclusion : Hypoxia-ischemia had a significant influence on the metabolism of striatal monoamine in neonatal rat brains. These findings suggest that monoamine, especially dopamine, and its metabolites could have a significant role in the pathogenesis of hypoxic-ischemic injury of neonatal rat brains.

Electrochemical Immunoassay based on the Dopamine-antigen Conjugate for Detecting Hippuric Acid (항원인 마뇨산에 결합된 도파민을 이용한 전기화학적 면역 분석법)

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.172-178
    • /
    • 2014
  • In this work, we describe an electrochemical immunosensor for simple, fast and quantitative detection of a urinary hippuric acid (HA). Urinary HA, of molecular weight 180 DA, is one of the major metabolites and biological indicators in toluene-exposed humans. Simple and ubiquitous monitoring of exposure to toluene is very important in occupational health care. We propose the electrochemical immunoassay based on the dopamine-antigen conjugate for detecting hippuric acid. Our electrochemical immunoassay system employs a conjugate of dopamine (DA) as an electrochemical active molecule and hippuric acid (HA) as an antigen. As an electrochemical aspect, dopamine (DA) containing two hydroxyl group can show excellent redox signal. Also, dopamine-tethered hippuric acid (DA-HA) shows the reversible redox signal in the immunoassay. The competition between HA and DA-HA generated electric signals proportional to HA concentration. The electrochemical immunoassay was performed with DA-HA on the screen printed carbon electrodes (SPCEs), and then applies the mixture antigen (HA) and HA-antibody. The electrical signals were proportional to HA in the range of 0.010~2.500 mg/mL which is enough range to be used for the point-of-care.

보혈안신탕(補血安神湯), 가미보혈안신탕(加味補血安神湯)의 항(抗) stress효과(效果)에 관(關)한 실험적(實驗的) 연구(硏究)

  • Lee Dong-Jin;Kim Ji-Hyeok;Hwang Ui-Wan
    • Journal of Oriental Neuropsychiatry
    • /
    • v.4 no.1
    • /
    • pp.77-97
    • /
    • 1993
  • Human and animals are living by acclimation to environmental changes like high and cold temperature, nose, confinement, etc. If the above changes reach a defined levels, some physiological abnormal state could appear, which we call them as stress state. Catecholamines are excreted by the sympathetic-adrenomedullary system in free from in urine. Catecholamines are derived from the adrenal medulla and urinary epinephrine can be taken as a rough estemation of the activity of this gland. Many scientist reported the endocrinological change, excretion of catecholamine and its metabolites, stomach ulcer formation, etc. under the condition of the confinement and high temperature. In this study author gave restraint, electric shock and immersion stress to rats by administrating by HPLC and got the following results. 1. In the restriant experiment, epinephrine contents in control rat was 194.7 ng, but in Bohyulanshintang administered rat urine 198.9 ng of epinephrine was found. 2. In the electrical shock experiment, 199.5 ng of epinephrine was found in the control rat urine, but in Bohyulanshintang administered rat urine epinephrine content was 142.4 ng. 3. Dopamine contents in control rat urine the immersion environment was 118.9 ng, but in Bohyulanshintang administered rat urine only 55.2 ng of dopamine was found. 4. Incontrol rat stomach there appeared focal erosion and inflamatory exudate, but in experimental group these symptom were turned to mild condition.

  • PDF

Korean red ginseng water extract produces antidepressant-like effects through involving monoamines and brain-derived neurotrophic factor in rats

  • Tzu-wen Chou ;Huai-Syuan Huang;Suraphan Panyod ;Yun-Ju Huang ;Lee-Yan Sheen
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.552-560
    • /
    • 2023
  • Background: Ginseng Radix (Panax ginseng Meyer, Araliaceae) has been used medicinally to treat the brain and nervous system problems worldwide. Recent studies have revealed physiological effects that could potentially benefit cognitive performance or mood. The present study aimed to investigate the antidepressant effects of Korean red ginseng water extract (KGE) and its active component in an unpredictable chronic mild stress (UCMS)-induced animal model and elucidate the underlying mechanisms. Methods: The antidepressant potential of the UCMS model was evaluated using the sucrose preference test and open field tests. The behavioral findings were further corroborated by the assessment of neurotransmitters and their metabolites from the prefrontal cortex and hippocampus of rats. Three doses of KGE (50, 100, and 200 mg/kg) were orally administered during the experiment. Furthermore, the mechanism underlying the antidepressant-like action of KGE was examined by measuring the levels of brain-derived neurotrophic factor (BDNF)/CREB, nuclear factor erythroid 2-related factor 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) proteins in the prefrontal cortex of UCMS-exposed rats. Results: KGE treatment normalized UCMS-induced depression-related behaviors. Neurotransmitter studies conducted after completing behavioral experiments demonstrated that KGE caused a reduction in the ratio of serotonin and dopamine, indicating a decrease in serotonin and dopamine turnover. Moreover, the expression of BDNF, Nrf2, Keap1 and AKT were markedly increased by KGE in the prefrontal cortex of depressed rats. Conclusion: Our results provide evidence that KGE and its constituents exert antidepressant effects that mediate the dopaminergic and serotonergic systems and expression of BDNF protein in an animal model.

Toluene Inhalation Causes Early Anxiety and Delayed Depression with Regulation of Dopamine Turnover, 5-HT1A Receptor, and Adult Neurogenesis in Mice

  • Kim, Jinhee;Lim, Juhee;Moon, Seong-Hee;Liu, Kwang-Hyeon;Choi, Hyun Jin
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.282-291
    • /
    • 2020
  • Inhaled solvents such as toluene are of particular concern due to their abuse potential that is easily exposed to the environment. The inhalation of toluene causes various behavioral problems, but, the effect of short-term exposure of toluene on changes in emotional behaviors over time after exposure and the accompanying pathological characteristics have not been fully identified. Here, we evaluated the behavioral and neurochemical changes observed over time in mice that inhaled toluene. The mice were exposed to toluene for 30 min at a concentration of either 500 or 2,000 ppm. Toluene did not cause social or motor dysfunction in mice. However, increased anxiety-like behavior was detected in the short-term after exposure, and depression-like behavior appeared as delayed effects. The amount of striatal dopamine metabolites was significantly decreased by toluene, which continued to be seen for up to almost two weeks after inhalation. Additionally, an upregulation of serotonin 1A (5-HT1A) receptor in the hippocampus and the substantia nigra, as well as reduced immunoreactivity of neurogenesis markers in the dentate gyrus, was observed in the mice after two weeks. These results suggest that toluene inhalation, even single exposure, mimics early anxiety-and delayed depression-like emotional disturbances, underpinned by pathological changes in the brain.

Neuroprotective Effect of l-Deprenyl Against 6-OHDA-Induced Dopamine Depletion in Rat Striatum and 6-OHDA-Induced Oxidative Stress in SH-SY5Y Cells (흰쥐 선조체에서 6-OHDA-유도 도파민 고갈 및 SH-SY5Y 세포주에서 6-OHDA-유도 산화적 스트레스에 대한 l-Deprenyl의 신경 보호효과)

  • Kim Eun-Mi;Choi Sinkyu;Lee Kyunglim;Kim Hwa-Jung
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.355-364
    • /
    • 2005
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has long been used to form a Parkinson's disease (PD) model by inducing the lesion in catecholaminergic pathways, particularly the nigrostriatal dopamine (DA) pathway. Whereas l-deprenyl, a selective inhibitor of monoamine oxidase (MAO) type B, is now widely used in the treatment of PD, the precise action mechanism of the drug remains elusive. In this study, we investigated whether l-deprenyl shows protective effect against the DA depletion induced by 6-OHDA in rat brain, and against 6-OHDA-induced neurotoxicity and oxidative stress in catecholaminergic neuroblastoma SH-SY5Y cells that are known to lack MAO-B activity. Pretreatment of l-deprenyl significantly enhanced the striatal DA, 3,4-dihydroxyphenylacetic acid, homovanilic acid, and 3-methoxytyramine levels compared to the untreated 6-OHDA-lesioned rat, indicating that l-deprenyl pretreatment prevents 6-OHDA-induced depletion of not only striatal dopamine but also its metabolites. Treatment of 6-OHDA for 24hrs decreased the cell viability and increase the generation of ROS in dose-dependent manners. We further investigated whether caspase activity is involved in the action of l-deprenyl. Treatment of l-deprenyl $(0.1\~100{\mu}M)$ did not produce any changes in 6-OHDA-induced cleavage of poly (ADP-ridose) polymerase in SH-SY5Y cells. Our results suggest that the neuroprotective effect of l-deprenyl against 6-OHDA is due to its increased scavenger activity, but independent of inhibition of MAO-B or caspase-3 activation.

Interplay between the Gut Microbiome and Metabolism in Ulcerative Colitis Mice Treated with the Dietary Ingredient Phloretin

  • Ren, Jie;Li, Puze;Yan, Dong;Li, Min;Qi, Jinsong;Wang, Mingyong;Zhong, Genshen;Wu, Minna
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1409-1419
    • /
    • 2021
  • A growing number of healthy dietary ingredients in fruits and vegetables have been shown to exhibit diverse biological activities. Phloretin, a dihydrochalcone flavonoid that is abundant in apples and pears, has anti-inflammatory effects on ulcerative colitis (UC) mice. The gut microbiota and metabolism are closely related to each other due to the existence of the food-gut axis in the human colon. To investigate the interplay of faecal metabolites and the microbiota in UC mice after phloretin treatment, phloretin (60 mg/kg) was administered by gavage to ameliorate dextran sulfate sodium (DSS)-induced UC in mice. Gut microbes and faecal metabolite profiles were detected by high-throughput sequencing and liquid chromatography mass spectrometry (LC-MS) analysis, respectively. The correlations between gut microbes and their metabolites were evaluated by Spearman correlation coefficients. The results indicated that phloretin reshaped the disturbed faecal metabolite profile in UC mice and improved the metabolic pathways by balancing the composition of faecal metabolites such as norepinephrine, mesalazine, tyrosine, 5-acetyl-2,4-dimethyloxazole, and 6-acetyl-2,3-dihydro-2-(hydroxymethyl)-4(1H)-pyridinone. Correlation analysis identified the relations between the gut microbes and their metabolites. Proteus was negatively related to many faecal metabolites, such as norepinephrine, L-tyrosine, laccarin, dopamine glucuronide, and 5-acetyl-2,4-dimethyloxazole. The abundance of unidentified Bacteriodales_S24-7_group was positively related to ecgonine, 15-KETE and 6-acetyl-2,3-dihydro-2-(hydroxymethyl)-4(1H)-pyridinone. The abundance of Christensenellaceae_R-7_group was negatively related to the levels of 15-KETE and netilmicin. Stenotrophomonas and 15-KETE were negatively related, while Intestinimonas and alanyl-serine were positively related. In conclusion, phloretin treatment had positive impacts on faecal metabolites in UC mice, and the changes in faecal metabolites were closely related to the gut microbiota.

Effects of Toluene Inhalation on The Concentrations of The Brain Monoamines and Metabolites (톨루엔 흡입이 뇌중 Monoamine 및 그대사물의 농도에 미치는 영향에 관한 연구)

  • 김대병;이종권;정경자;윤여표
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.495-500
    • /
    • 1998
  • The effect of acute toluene exposure on behaviour and monoamine concentrations in the various brain regions were investigated in the rat. Toluene was adminstered via inhalation to rats at concentrations of 0, 1000, 10000, 40000 ppm for 20 min. During exposure to toluene, spontaneous locomotor activity was counted. After exposure, animals were sacrificed instantly and brains were separated. Regional concentratons of brain monoamines (norepinephrine, NE; dopamine, DA; 5- hydroxytryptamine, 5-HT) and its metabolites (3,4-dihydroxyphenylacetic acid, DOPAC; homovanillic acid, HVA; 5-hydroxyindole-3-acetic acid, 5-HIAA) were determined. The changes in locomotor activity during toluene exposure depended on the toluene concentration. At 1000 ppm concentration, spontaneous locomotor activity increased initially and thereafter decreased. At higher concentrations (10000 ppm and 40000 ppm), spontaneous locomotor activity decreased and eventually ceased. A regional analysis of VA, NE, 5-HT, VOPAC, HVA, and 5-HIAA indicated a significant decrease in VA concentrations in cerebellum and striatum while NE and 5-HT concentrations were significantly increased in the cerebellum and cortex. 5-HIAA concentrations were significantly increased in all brain regions. DOPAC concentrations were significantly increased in cerebellum and cortex while decreased in striatum. These results especially indicated that metabolic conversion of DA to HVA in striatum was highly increased by toluene inhalation. However, It remains to elucidate between behavioural responses and monoamine changes.

  • PDF

The Optimum Conditions for the Simultaneous Determination of Neurotransmitters in Rat Brain Striatum by High Performance Liquid Chromatography with Electrochemical Detection (HPLC-ECD를 이용한 흰쥐 뇌의 선조체 중 신경전달물질의 동시분석시 최적 조건)

  • Kang, Jong-Seong;Mun, Min-Seon;Shin, Hyung-Seon;Lee, Soon-Chul
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.215-220
    • /
    • 1995
  • A simple, efficient and sensitive method was described for the simultaneous determination of catecholamine, indoleamine and related metabolites from the homogenates of the rat brain striatum by HPLC-ECD. The optimum mobile phase on a reverse phase $C_{18}$ column was 35mM sodium acetate buffer(included 10mM citric acid, 0.13mM $Na_4EDTA$, 0.58mM SOS, pH3-4):MeOH=85:15. The column temperature was $30^{\circ}C$. Dopamine(DA), 3, 4-dihydroxyphenyl acetic acid(DOPAC), homovanilic acid(HVA), 5-hydroxyindole acetic acid(5-HIAA), serotonin(5-HT) and noradrenaline(NA) could be separated and analysed to very small amount. The detection limits of this method were 2~10pg per injection for all components. The effects of age and sex of rat on the contents of the catecholamines and their metabolites in rat brain striatum were studied. The levels of DA and 5-HT contents of the 7 week old female rats were higher than those of the 7 week old male rats. As the age of rat increases, the contents of DOPAC increased significantly.

  • PDF

LC-MS/MS-based Quantification of Ten Neurotransmitters in Rat Limbic System and Serum: Application to Chronic Unpredictable Mild Stress-Induced Depression Rats

  • Mingyan Ma;Qiangxiang Chen;Wen Cao;Yubo Zhou;Aijuan Yan;Yanru Zhu
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.91-103
    • /
    • 2023
  • As one of the most common mood disorders, numerous studies have shown depression is the main risk factor for non-suicidal self-harm. The pathogenesis of depression is complex, and a comprehensive and rapid measurement of monoamine neurotransmitters and their metabolites will be very helpful in understanding the pathogenesis of depression. Therefore, a rapid and sensitive underivatized liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous monitoring of the levels of ten neurotransmitters and their metabolites in rat serum and limbic system and successfully applied to quantify the changes of neurotransmitter levels in chronic unpredictable mild stress-induced rats. The analytes studied were mainly involved in tyrosine metabolism, tryptophan metabolism, and glutamate cycling pathways, which are important in the pathogenesis of depression. It had been verified the method was sensitive and effective, with satisfactory linearity, and met the requirements of biological sample determination. Levels of neurotransmitters in rat serum, hippocampus, amygdala, prefrontal cortex, striatum, and hypothalamus were determined via the method. The results showed serotonin, dopamine, norepinephrine, and their metabolites were decreased, glutamine was increased, and glutamate was disturbed in chronic unpredictable mild stress-induced depression rats. This method provides a new approach to studying the pathogenesis of depression and other neurological disorders.