• 제목/요약/키워드: Dopamine $D_1$ receptors

검색결과 57건 처리시간 0.028초

Dopamine Receptor Interacting Proteins (DRIPs) of Dopamine D1-like Receptors in the Central Nervous System

  • Wang, Min;Lee, Frank J.S.;Liu, Fang
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.149-157
    • /
    • 2008
  • Dopamine is a major neurotransmitter in the mammalian central nervous system (CNS) that regulates neuroendocrine functions, locomotor activity, cognition and emotion. The dopamine system has been extensively studied because dysfunction of this system is linked to various pathological conditions including Parkinson's disease, schizophrenia, Tourette's syndrome, and drug addiction. Accordingly, intense efforts to delineate the full complement of signaling pathways mediated by individual receptor subtypes have been pursued. Dopamine D1-like receptors are of particular interest because they are the most abundant dopamine receptors in CNS. Recent work suggests that dopamine signaling could be regulated via dopamine receptor interacting proteins (DRIPs). Unraveling these DRIPs involved in the dopamine system may provide a better understanding of the mechanisms underlying CNS disorders related to dopamine system dysfunction and may help identify novel therapeutic targets.

EFFECTS OF ACUTE AND SUBACUTE ADMINISTRATION OF COCAINE ON DOPAMINERGIC SYSTEMS IN THE RAT STRIATUM

  • Lim, D.K.;Ho, I.K.
    • Toxicological Research
    • /
    • 제6권1호
    • /
    • pp.75-88
    • /
    • 1990
  • The characteristics of dopamine uptake, D-1 and D-2 receptors after acute and subacute cocaine administration were determind in striatum from WKY and SHR. Cocaine was administered either acutely (40 mg/kg, s.c.) or twice daily (20 mg/kg, s.c.) for 3 and 7 days in 9-wk old WKY and SHR. Rats were sacrificed 30 min, 2 or 24 h after the single injection and 18 h after the last administration to the subacutely treated group. The changes in dopamine uptake, dopamine uptake sites, D-1 and D-2 receptors were determined using $(^3H)$dopamine, $(^3H)$-GBR-12935, $(^3H)$SCH-23390 and $(^3H)$sulpiride, respectively. In acutely treated rats, significant increases in $V_{max}$of dopamine uptake were observed 30 min after the cocanine injection in both strains without changes in $K_m$ values. The in vitro $IC_{50}$for cocaine was significantly decreased 30 min in WKY and 2 h in SHR. However, that for in vitro GBR-12909 was significantly increased 30 min and 2 h in both strains. Also densities of $(^3H)$-GBR-12935 binding sites were significantly increased 30 min and 2 h without changes in their $K_d$. Significant increases in D-2 receptor density were observed 30 min, 2 or 24 h after acute injection in both strains without changes in their affinities. The density of D-1 receptor was significantly decreased 30 min after the injection in WKY, but not in SHR. In subacutely treated rats, a significant increase in $K_m$ of dopamine uptake was observed in 7-day treated SHR. The in vitro $IC_{50}$fot GBR-12909 was significantly increased in 3-day treated WKY. The density of D-1 receptors was significantly increased in 3- and 7-day treated WKY, but not in SHR. The affinity of both binding sites remained unchanged. The results suggest that cocanine administration alters dopamine uptake, characteristics of dopamine uptake sites and dopamine receptor binding characteristics in rat brain. Furthermore, D-1 and D-2 dopamine receptors appear to be differently regulated.

  • PDF

Antagonists of Both D1 and D2 Mammalian Dopamine Receptors Block the Effects of Dopamine on Helix aspersa Neurons

  • Kim, Young-Kee;Woodruff, Michael L.
    • BMB Reports
    • /
    • 제28권3호
    • /
    • pp.221-226
    • /
    • 1995
  • Dopamine mediates inhibitory responses in Helix aspersa neurons from the right parietal lobe ("F-lobe") of the circumoesophageal ganglia. The effects appeared as a dose-dependent hyperpolarization of the plasma membrane and a decrease in the occurrence of spontaneous action potentials. The average hyperpolarization with 5 ${\mu}m$ dopamine was -12 mV (${\pm}1.5$mV, S.D., n=12). Dopamine also modulated the currents 'responsible for shaping the action potentials in these neurons. When dopamine was added and action potentials were triggered by an injection of current, the initial depolarization was slowed, the amplitude and the duration of action potentials were decreased, and the after-hyperpolarization was more pronounced. The amplitude and the duration of action potential were reduced about 15 mV and about 13% by 5 ${\mu}m$ dopamine, respectively. The effects of dopamine on the resting membrane potentials and the action potentials of Helix neurons were dose-dependent in the concentration range 0.1 ${\mu}m$ to 50 ${\mu}m$. In order to show 1) that the effects of dopamine were mediated by dopamine receptors rather than by direct action on ionic channels and 2) which type of dopamine receptor might be responsible for the various effects, we assayed the ability of mammalian dopamine receptor antagonists, SCH-23390 (antagonist of D1 receptor) and spiperone (antagonist of D2 receptor), to block the dopamine-dependent changes. The D1 and D2 antagonists partially inhibited the dopamine-dependent hyperpolarization and the decrease in action potential amplitude. They both completely blocked the decrease in action potential duration and the increase in action potential after-hyperpolarization. The dopamine-induced slowdown of the depolarization in the initial phase of the action potentials was less effected by SCH-23390 and spiperone. From the results we suggest 1) that Helix F-lobe neurons may have a single type of dopamine receptor that binds both SCH-23390 and spiperone and 2) that the dopamine receptor of Helix F-lobe neurons may be homologous with and primitive to the family of mammalian dopamine receptors.

  • PDF

도파민의 위암세포증식에서의 역할 (Roles of Dopamine in Proliferation of Gastric-Cancer Cells)

  • 정희준;박기호;채현동
    • Journal of Gastric Cancer
    • /
    • 제6권3호
    • /
    • pp.132-138
    • /
    • 2006
  • 목적: 도파민은 중추신경전달물질이지만 위장관에서 도파민수용체와 결합하여 점막상피세포 증식, 상피세포의 보호, 위암 세포증식과 관련이 있는 것으로 알려져 있다. 본 연구에서는 위암에서 기원한 세포주를 이용하여 도파민과 각각의 도파민 수용체가 위암 세포 증식과 억제에 작용하는 역할에 대해 알아보았다. 대상 및 방법: 위암세포기원에서 각각 유래한 세포주인 SNU601과 KCU-C2를 이용하여 RNA 추출 후 RT-PCR 시행 후 도파민수용체 D1, D2L과 D2S 각각에 대한 primer로 PCR을 시행하여 수용체 유전자의 상대적인 발현정도를 측정하였다. 도파민과 Dl 수용체의 대항제인 SCH 23390과 D2 수용체 대항제인 raclopride를 사용하여 약물처리에 따른 위암세포주에서 세포 증식에 대한 분석을 하였다. 결과: KCU-C2 세포주에서 D1과 D2L과 D2S 유전자 mRNA의 상대적인 발현정도는 모두 높은 발현을 보였지만, SNU 601 세포주에는 mRNA의 발현이 모두 낮은 수준이었으며, 특히 D2L mRNA는 발현되고 있지 않았다. 약물처리에 따른 위암세포주에서 세포증식에 대한 분석에서는 D1과 D2S 수용체를 통한 도파민의 신호는 세포의 증식을 억제하였고 D2L 수용체를 통한 도파민의 신호는 세포의 증식을 유도하였다. 결론: 본 연구를 통해 도파민이 위암의 세포증식과 억제에 관여하며, 도파민의 이러한 효과는 도파민의 신호가 어느 수용체를 통해 전달되었느냐에 따라 위암세포의 증식과 억제가 이루어짐을 알 수 있었다.

  • PDF

Changes in the Central Dopaminergic Systems in the Streptozotocin-induced Diabetic Rats

  • Lim, D.K.;Lee, K.M.;Ho, I.K.
    • Archives of Pharmacal Research
    • /
    • 제17권6호
    • /
    • pp.398-404
    • /
    • 1994
  • The behavioral response, depamine metabolism, and characteristics of dopamine subtypes after developing the hyperlycemia were studied in the striata of rats. In animals developed hyperglycemia, the on-set duration of cataleptic behavior responded to SCH 23390 injection was delayed abd shortened, respectively. However, the cataleptic response to spiperone occurred significantly earlier in on-set and prolonged in duration. Dopamine metabolites, dihydroxyphenylacetic acid (DDPAC) and homovanillic acid (HVA), were significantly reduced in teh striata of hyeprglycemic rats. However, level of DA was significantly increased. It is noted that the ratios of DOPAC and HVA to DA were decreased, suggesting decreased tumover of DA. The affinity of striatal D-1 receptors was significantly increased without changes in the number of binding sites, while the maximum binding number of D-2 recptors was significantly increased without affecting its affinity in the diabetic rats. These results indicate that the dopaminergic activity in striatia was altered in hyperglycemic rats. Furthermore, it suggests that the upregulation of dopamine receptors might be due to the decreased dopamine matabolism.

  • PDF

Regulation of Prolactin Secretion: Dopamine is the Prolactin-release Inhibiting Factor (PIF), but also Plays a Role as a Releasing Factor (PRF)

  • Shin, Seon H.;Song, Jin-Hyang;Ross, Gregory M.
    • Animal cells and systems
    • /
    • 제3권2호
    • /
    • pp.103-113
    • /
    • 1999
  • Many in-depth reviews related to regulations of prolactin secretion are available. We will, therefore, focus on controversial aspects using personal opinion in this review. The neuroendocrine control of prolactin secretion from the anterior pituitary gland involves multiple factors including prolactin-release inhibiting factor (PIF) and prolactin releasing factor (PRF). The PIF exerts a tonic inhibitory control in the physiological conditions. The PIF should be able to effectively inhibit prolactin release or a lifetime, but the inhibitory action of dopamine cannot be sustained for a long period of time. Perifusion of a high concentration of dopamine (l ,000 nM) could not sustain inhibitory action on prolactin release but when a small amount of ascorbic acid (0.1 mM) is added in a low concentration of dopamine (3 nM) solution, prolactin release was inhibited for a long period. Ascorbate is essential for dopamine action to inhibit prolactin release. We have, therefore, concluded that the PIF is dopamine plus ascorbate. The major transduction system for dopamine to inhibit prolactin release is the adenylyl cyclase system. Dopamine decreases cyclic AMP concentration by inhibiting adenylyl cyclase, and cyclic AMP stimulates prolactin release. However, the inhibitory mechanism of dopamine on prolactin release is much more complex than simple inhibition of CAMP production. The dopamine not only inhibits cyclic AMP synthesis but also inhibits prolactin release by acting on a link(s) after the CAMP event in a chain reaction for inhibiting prolactin release. Low concentrations of dopamine stimulate prolactin release. Lactotropes are made of several different subtypes of cells and several different dopamine receptors are found in pituitary. The inhibitory and stimulatory actions induced by dopamine can be generated by different subtype of receptors. The GH$_4$ZR$_7$ cells express only the short isoform (D$_{2s}$) of the dopamine receptor, as a result of transfecting the D$_{2s}$ receptors into GH$_4$C$_1$ cells which do not express any dopamine receptors. When dopamine stimulates or inhibits prolactin release in GH$_4$ZR$_7$ cells, it is clear that the dopamine should act on dopamine D$_{2s}$ receptors since there is no other dopamine receptor in the GH$_4$ZR$_7$. Dopamine is able to stimulate prolactin release in a relatively low concentration while it inhibits in a high concentration in GH$_4$ZR$_7$. These observations indicate that the dopamine D$_2$ receptor can activate stimulatory and/or inhibitory transduction system depending upon dopamine concentrations.

  • PDF

Effects of Dopamine Agonists on Primary Cultured Neurons from Various Brain Regions

  • Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • 제2권1호
    • /
    • pp.16-22
    • /
    • 1994
  • Using 2 to 4 day-old postnatal rats, primary brain cell cultures were made from various brain regions (substantia nigra, hippocampus, striatum, and nucleus accumbens). Whole-cell patch clamp technique was used for electrophysiological studies. Neurons cultured from substantia nigra were characterized more in detail to test whether these cultured neurons were appropriate for physiological studies. Immunocytochemical and electrophysiological properties of these cultured neurons agreed with those from other in vivo or in vitro studies suggesting that cultured neurons maintained normal cytological and physiological conditions. Modulation of ionic channels through dopamine receptors were studied from brain areas where dopamine plays important roles on brain functions. When neurons were clamped near resting membrane potential (-74mV), R(+), R(+)-SKF 38393, a specific D$_1$receptor agonist, activated cultured striatal neurons, and dopamine itself produced biphasic responses. Responses of cultured hippocampal neurons to dopamine agonists were kinds of mirror images to those from striatal neurons; D$_1$receptor agonists inhibited hippocampal neurons but quinpirole, a D$_2$receptor agonist, activated them. Neurons cultured from nucleus accumbens were inhibited by dopamine.

  • PDF

Effect of Intracerebroventricular Administration of Ethylcholine Aziridinium (AF64A) on Dopaminergic Nervous Sys-tems

  • Lim, Dong-Koo;Ma, Young;Yi, Eunyoung
    • Archives of Pharmacal Research
    • /
    • 제19권1호
    • /
    • pp.23-29
    • /
    • 1996
  • Changes in dopaminergic activities were investigated after the intracerebroventricular (icv) administration of ethylcholine aziridium (AF64A) in rats. The levels of dopamine (DA) and metabolites, the activities of tyrosine hydroxylase (TH) and monoamine oxidase (MAO), and the specific binding sites of dopamine receptros in striata, hippocampus, and frontal cortex were assessed 6 days after the AF64A treatment with 3 nmol/each ventrcle. In frontal cortex, the levels of DA and metabolities were significantly decreased without changes in metabolites/DA ratios in the AF64A-treated groups. In contrast, the ratios of metabolites/DA were significantly decreased in striatum and hippocampus in the AF64A treatment. The activity of TH in frontal cortex was significantly decreased. However, that in other areas was not changed. Also the activity of MAO-A was not changed in the studied brain regions. However, the activity of MAO-B in striatum was significantly increased with no change in other areas. The specific binding sites of dopamine D1 and D2 receptors were increased in AF64A-treated frontal cortex. However, those were not changed in striatum and hippocampus except the small decreased specific binding sites of dopamine D-1 receptors in striatum after AF64A treatment. These results indicate that the dopaminergic activity was altered in AF64A treatment. Furthermore, it suggest that the decreased dopaminergic activities in each brain regions might be differently affected by AF64A treatment.

  • PDF

Role of Helix 8 in Dopamine Receptor Signaling

  • Yang, Han-Sol;Sun, Ningning;Zhao, Xiaodi;Kim, Hee Ryung;Park, Hyun-Ju;Kim, Kyeong-Man;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.514-521
    • /
    • 2019
  • G protein-coupled receptors (GPCRs) are membrane receptors whose agonist-induced dynamic conformational changes trigger heterotrimeric G protein activation, followed by GRK-mediated phosphorylation and arrestin-mediated desensitization. Cytosolic regions of GPCRs have been studied extensively because they are direct contact sites with G proteins, GRKs, and arrestins. Among various cytosolic regions, the role of helix 8 is least understood, although a few studies have suggested that it is involved in G protein activation, receptor localization, and/or internalization. In the present study, we investigated the role of helix 8 in dopamine receptor signaling focusing on dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R). D1R couples exclusively to Gs, whereas D2R couples exclusively to Gi. Bioinformatic analysis implied that the sequences of helix 8 may affect GPCR-G protein coupling selectivity; therefore, we evaluated if swapping helix 8 between D1R and D2R changed G protein selectivity. Our results suggest that helix 8 is not involved in D1R-Gs or D2R-Gi coupling selectivity. Instead, we observed that D1R with D2R helix 8 or D1R with an increased number of hydrophobic residues in helix 8 relative to wild-type showed diminished ${\beta}$-arrestin-mediated desensitization, resulting in increased Gs signaling.

Molecular Modeling of the Subtype Dopamine Receptor-ligand Interactions

  • Baek, Minkyung;Shin, Woong-Hee
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.13-24
    • /
    • 2013
  • Dopamine agonists and antagonists and its receptor play a critical role in the information transfer in the nervous system, and dopamine receptor-ligands interactions are deeply related to Parkinson's disease, schizophrenia and some other mental diseases. However, the only experimental 3D structure available for dopamine receptors is human D3 dopamine receptor. Therefore, it is important to create model of subtype dopamine receptor-ligands interactions. We report here the 3D structures of the human D1 and D2 dopamine receptor predicted by using GalaxyTBM, and its predicted binding site determined by using GalaxyDock. The highly conserved Asp on TM 3 and Phe on TM 6 have critical role in ligand binding. Also, highly conserved serines on TM 5 are essential for binding agonists and some kinds of antagonists. We identify differences between binding sites of agonists and antagonists of human D1 and D2 dopamine receptor, and find the reasons of selective binding of antagonists.

  • PDF