• Title/Summary/Keyword: Door assembly

Search Result 41, Processing Time 0.021 seconds

Welding Distortion Characteristics of Door Openings According to Changing Shape of Stiffener (Door Opening부의 보강재 형상변화에 따른 용접 변형 특성)

  • Lee, Dong-Hun;Seo, Jung-Kwan;Yi, Myung-Su;Hyun, Chung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.153-160
    • /
    • 2019
  • Welding often results in welding distortion during the assembly process. The welding distortion of thin-plate structures such as the living quarters of ships and offshore installations is a more significant problem than in the case of thick-plate structures. Pre-stressing/heating and fairing, which are additional works to mitigate and control welding distortion, are inevitable, and the construction planning is accordingly delayed. In order to prevent welding distortion and minimize the additional work during the assembly process, increasing the plate thickness and/or the number of stiffeners may be a simple solution, but it may give rise to problems related to cost and weight. In this study, the welding distortion control effect of the type of stiffeners on the door openings of various living quarter structures was investigated using an experimental method and a finite element method. The results showed the feasibility of mitigating and controlling the welding distortion, and the optimum selection of the type of stiffeners was confirmed.

The Process Development of Automotive Light-Weighting Door using High Strength Steel (고장력강을 이용한 자동차 경량 도어 개발 프로세스)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • This paper proposes the process to develop a light-weighting automotive door assembly using high strength steel with low cost penalty. In recent years, the automotive industry is making an effort to reduce the vehicle weight. In this study, inner panels for automotive front door using thinner sheets and quenchable boron steel were designed to reduce the weight of conventional one. In order to evaluate the stiffness properties for the proposed door design, the several static tests were conducted using the finite element method. Based on the simulation results, geometry modifications of the inner panels were taken into account in terms of thickness changes and cost saving. Furthermore, a prototype based on the proposed design has been made, and then static stiffness test carried out. From the results, the proposed door is proved compatible and weight reduction of 11.8% was achieved. It could be a reference process for automotive industry to develop the similar products.

Position Correction Algorithm of Door Mounting Robot based on Door-Chassis Gap Sleasure (도어-차체 틈새 측정에 근거한 도어 장착 로보트의 위치 보정 알고리즘 개발)

  • 김미경;강희준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.565-570
    • /
    • 1994
  • This work deals with finding a suitable position correction algorithm of industrial robot based on measuring gaps between door and chassis. The algorithm calculates correction quantities and then must allow visually acceptable door-chassis assembly take. The algorithm simulation is performed for a simple door-chassis model, and its effectiveness is addressed in terms of the predefined total unformity, line uniformity. In addition, the error sensitivity analysis of the rotation center of door due to the mismatch of robot grasping is performed using the algorithm.

  • PDF

A Study on Developing Sound Quality Index of Car Door Latch and Improving Sound Quality by Changing Door Latch Assembly Design (자동차 도어랫치의 음질 지수 개발 및 단품 개선을 통한 음질 향상 연구)

  • Jo, Hyeonho;Seong, Wonchan;Kim, Seonghyeon;Park, Dongchul;Kang, Yeonjune
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.519-524
    • /
    • 2013
  • The purpose of this study is that developing the index which evaluate sound quality of door latch and improving its sound quality through that results. For that, various operating sound of door latch was used for jury test. Loudness and sharpness related metrics are dominant in sound quality index we developed. This research investigate the main transfer path of its operating sound through sound field visualization and get conclusion that could reduce the impact sound of door latch. Therefore, we could verify sound quality improvement of modified product by using sound quality index.

  • PDF

A Study on the Dynamic Characteristics of Door Module Plate (도어 모듈 플레이트의 동특성 분석에 관한 연구)

  • Bae, Chul-Yong;Kim, Wan-Su;Kim, Chan-Jung;Lee, Bong-Hyun;Jang, Woon-Sung;Mo, Yu-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.918-923
    • /
    • 2007
  • Currently, automotive industries improve the vehicle performance and reduce the development period of vehicle using each module part for the high quality and performance of vehicles. However each component part doesn't generate the noise and vibration problems, sometime these problems are generated on the assembly status between vehicle chassis frame and each module part. On this study, in order to analysis the dynamic characteristics of a shield door module that is a typical module part of vehicles, the acquisition and evaluation process about the vibration and noise of shield door module is developed. Also the possibility to apply to shield door module of the developed process is verified by the comparison with the dynamic characteristics between plastic and steel module plate.

  • PDF

An Experimental Study on Cracks due to Changes in Length of the Vehicle Door Latch Hieroglyphic Punch Stroke (차량용 도어 래치의 상형 펀치 길이 변화에 따른 크랙 발생에 관한 실험적 연구)

  • Hong, Cheong-Min;Jung, Hyun-Suk;Lee, Ha-Sung;Kim, Sun-Yong
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.16-19
    • /
    • 2015
  • In this paper, The experimental study on the crack during press forming of the door latch assembly for a vehicle door is performed. Length to be inserted into the conventional mold upper die punch is 20 mm, wherein the cracks are generated on the product surface and causes a secondary quality problem. In this study, the length to be inserted in the mold upper die punch 0 mm, 10 mm, 20 mm, which was changed to perform the experiment. Through the experiment, the length inserted into the mold can be seen that the upper die punch of the press forming conditions optimized when the 0 mm.

  • PDF

A Study on Developing Sound Quality Index of Car Door Latch and Improving Sound Quality by Changing Door Latch Assembly Design (자동차 도어 랫치의 음질 지수 개발 및 단품 개선을 통한 음질 향상 연구)

  • Jo, Hyeonho;Sung, Weonchan;Kim, Seonghyeon;Park, Dongchul;Kang, Yeon June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.614-619
    • /
    • 2015
  • The purpose of this study is that developing the index which evaluate sound quality of door latch and improving its sound quality through that results. For that, various operating sound of door latch was used for jury test. Loudness and sharpness related metrics are dominant in sound quality index we developed. This research investigate the main transfer path of its operating sound through sound field visualization and get conclusion that could reduce the impact sound of door latch. Therefore, we could verify sound quality improvement of modified product by using sound quality index.

Process Design of Trimming to Improve the Sheared-Edge of the Vehicle Door Latch based on the FE Simulation and the Taguchi Method (유한요소해석 및 다구찌법을 이용한 자동차 도어 래치의 전단면 품질 향상을 위한 트리밍 공정 설계)

  • Lee, Jung-Hyun;Lee, Kyung-Hun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.483-490
    • /
    • 2016
  • Automobile door latch is a fine design and assembly techniques are required in order to produce them in a small component assembly shape such as a spring, injection products, a small-sized motor. The door latch is fixed to not open the door of the car plays an important role it has a direct impact on the driver's safety. In this study, during trimming of the terminals of the connector main components of the car door latch, reduce rollover and conducted a research to find a suitable effective shear surface. Using the Taguchi method with orthogonal array of Finite Element Analysis and optimal Design of Experiments were set up parameters for the shear surface quality of the car door latch connector terminals. The design parameters used in the analysis is the clearance, the radius, and the blank holding force, the material of the connector terminal is a C2600. Trimming process optimum conditions suggested by the analysis has been verified by experiments, the shear surface shape and dimensions of a final product in good agreement with forming analysis results.Taguchi method from the above results in the optimization for the final rollover and effective shear surface improved for a vehicle door latch to the connector terminal can be seen that the applicable and useful for a variety of metal forming processes other than the trimming process is determined to be applicable.

A study on measurement and compensation of automobile door gap using optical triangulation algorithm (광 삼각법 측정 알고리즘을 이용한 자동차 도어 간격 측정 및 보정에 관한 연구)

  • Kang, Dong-Sung;Lee, Jeong-woo;Ko, Kang-Ho;Kim, Tae-Min;Park, Kyu-Bag;Park, Jung Rae;Kim, Ji-Hun;Choi, Doo-Sun;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • In general, auto parts production assembly line is assembled and produced by automatic mounting by an automated robot. In such a production site, quality problems such as misalignment of parts (doors, trunks, roofs, etc.) to be assembled with the vehicle body or collision between assembly robots and components are often caused. In order to solve such a problem, the quality of parts is manually inspected by using mechanical jig devices outside the automated production line. Automotive inspection technology is the most commonly used field of vision, which includes surface inspection such as mounting hole spacing and defect detection, body panel dents and bends. It is used for guiding, providing location information to the robot controller to adjust the robot's path to improve process productivity and manufacturing flexibility. The most difficult weighing and measuring technology is to calibrate the surface analysis and position and characteristics between parts by storing images of the part to be measured that enters the camera's field of view mounted on the side or top of the part. The problem of the machine vision device applied to the automobile production line is that the lighting conditions inside the factory are severely changed due to various weather changes such as morning-evening, rainy days and sunny days through the exterior window of the assembly production plant. In addition, since the material of the vehicle body parts is a steel sheet, the reflection of light is very severe, which causes a problem in that the quality of the captured image is greatly changed even with a small light change. In this study, the distance between the car body and the door part and the door are acquired by the measuring device combining the laser slit light source and the LED pattern light source. The result is transferred to the joint robot for assembling parts at the optimum position between parts, and the assembly is done at the optimal position by changing the angle and step.

An Experimental Study on the Mechanical Mounting between GFRP Door Impact Beam and Steel Brackets (GFRP 도어 임팩트 빔과 Steel 브래킷의 기계적 결합에 관한 실험적 연구)

  • Ha, Jung-Chan;Shin, Young-cheol;Baek, In-Seok;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.103-110
    • /
    • 2021
  • The mounting performance of the GFRP(Glass fiber Reinforced Plastic) beam and the mechanical mounting of the steel bracket was studied to be mounted as a GFRP impact beam on the side door of the passenger car. Moreover, an open-hole tensile test was performed to evaluate breakage tendency based on GFRP stacking conditions. Furthermore, the tightening strength of rivets and bolts was compared using the single lap-shear tension test for the GFRP stacking pattern. Additionally, the GFRP beam and bracket mounting features were designed; moreover, the prototype and bracket were assembled. Additionally, the bracket mounting bending test and the door assembly static bending test were performed to verify the stability of the bracket mounting. In the bracket fastening bending test, no breakage occurred in the connection part between the GFRP beam and the bracket, and it showed 67% (24.4 kN) improved performance compared to steel. In the static bending test of the door assembly, the initial average reaction force increased by 25% compared to the steel, and the performance of all FMVSS-214 regulations was satisfied. The replacement of GFRP impact beams resulted in a 30% weight reduction