• 제목/요약/키워드: Donor-acceptor polymer

검색결과 46건 처리시간 0.022초

A Novel Donor-Acceptor-Acceptor-Acceptor Polymer Containing Benzodithiophene and Benzimidazole-Benzothiadiazole-Benzimidazole for PSCs

  • Tamilavan, Vellaiappillai;Song, Myungkwan;Agneeswari, Rajalingam;Kim, Sangjun;Hyun, Myung Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1098-1104
    • /
    • 2014
  • New electron deficient acceptor-acceptor-acceptor type of monomer unit composed of weak electron accepting benzimidazole and relatively strong electron accepting benzothiadiazole derivatives namely 4,7-bis(6-bromo-1-(2-ethylhexyl)-1H-benzo[d]imidazol-2-yl)benzo[c][1,2,5]thiadiazole (BBB) was synthesized. The Stille polycondensation of the newly synthesized BBB monomer with electron donating 2,6-bis(trimethyltin)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene (BDT) afforded donor-acceptor-acceptor-acceptor type of polymer namely 2,6-(4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-alt-4,7-bis(1-(2-ethylhexyl)-1H-benzo[d]imidazol-2-yl)benzo[c][1,2,5]thiadiazole (PBDTBBB). The opto-electrical studies revealed that the absorption band of PBDTBBB appeared in the range of 300 nm-525 nm and its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were positioned at -5.18 eV and -2.84 eV, respectively. The power conversion efficiency (PCE) of the polymer solar cell (PSC) prepared from PBDTBBB:PC71BM (1:2 wt %) blend was 1.90%.

전하 이동을 이용한 실세스퀴옥산/폴리스티렌 하이브리드 (Silsesquioxane/Polystyrene Hybrid Materials via Charge Transfer Interactions)

  • 최지원;요시키 주조
    • 폴리머
    • /
    • 제31권2호
    • /
    • pp.136-140
    • /
    • 2007
  • Carbazole(electron donor)그룹과 dinitrobenzene(electron acceptor)그룹을 이용하여 전하 이동 작용이 실세스퀴옥산/고분자 하이브리드의 형성 메커니즘으로서 작용할 수 있는지 살펴보는 연구를 진행하였다. 하이브리드 실험은 새롭게 합성된 Poly(carbazole-styrene) (PS/D)와 dinitrobenzyl silsesquioxane (Cube/A)의 톨루엔 용액을 혼합/캐스팅을 하여 만들어진 필름을 이용하였으며 상분리가 없는 투명한 하이브리드 필름이 일부 조건에서 얻어졌다. PS/D및 Cube/A의 $^1H-NMR$분석, 그리고 하이브리드 필름들의 UV 흡수 실험은 실세스퀴옥산에 의한 입체 장애 효과가 없는 조건에서는 acceptor와 donor가 1:1로 전하 이동 착물을 형성할 수 있지만, 상분리가 없는 투명한 실세스퀴옥산 하이브리드는 acceptor/donor의 비율이 0.7 : 1 이하에서 형성된다는 것을 보여주었다. 이 결과들은 또 실세스퀴옥산 한 분자 당 평균 4개의 전하 이동 착물이 형성된다는 하이브리드 나노 구조에 대한 정보도 제공하였다.

Nano-Encapsulation of Fluorescent Dyes in Diblock Copolymer Micelles

  • Yoo, Seong-Il;Zin, Wang-Cheol;Sohn, Byeong-Hyeok
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.193-193
    • /
    • 2006
  • Fluorescent dyes were encapsulated in the nanometer-sized diblock copolymer micelles to control the fluorescence resonance energy transfer. Since acceptor molecules and donor molecules were effectively isolated in the independent micelles, the energy transfer between donors and acceptors was suppressed by the site isolation, leading to the simultaneous emission from both donor and acceptor molecules.

  • PDF

Two-Photon Absorption Cross Sections of Dithienothiophene-Based Molecules

  • Chung, Myung-Ae;Lee, Kwang-Sup;Jung, Sang-Don
    • ETRI Journal
    • /
    • 제24권3호
    • /
    • pp.221-225
    • /
    • 2002
  • We performed nonlinear transmission measurements and quantum-chemical calculations on dithienothiophene(DTT)-based molecules to gain insight into the effect of acceptor and donor groups on two-photon absorption(TPA) properties. The TPA intensity showed dispersion characteristics of the single-photon absorption spectrum. When the molecules included an asymmetric donor-acceptor pair, the single- and two-photon absorption maximum wavelengths were red-shifted more than when the molecules had a symmetric donor-donor structure. We interpreted this result as indicating that the $S_2$ state plays the dominating role in the absorption process of molecules with a symmetric structure. The experimental TPA ${\delta}$ values at the absorption peak wavelength showed a dependence on the structural variations. We found the self-consistent force-field theory and Hartree-Fock Hamiltonian with single configuration interaction formalism to be valid for evaluating TPA ${\delta}$. Although the quantum-chemical calculations slightly underestimated the experimental ${\delta}$ values obtained from nonlinear trans -mission measurements, they reasonably predicted the dependence of the ${\delta}$ value on the structural variations. We confirmed the role of molecular symmetry by observing that donor-donor substituted structure gave the highest experimental and theoretical TPA ${\delta}$ values and that the donor-acceptor substituted structure showed a greater red-shift in the TPA absorption maximum wavelength. Overall, the theoretical ${\delta}$ values of DTT-based molecules were in the order of $10^{-46}\;cm^4{\cdot}s{\cdot}photon^{-1}$ and are higher than that of AF-50 by nearly two orders of magnitude.

  • PDF

Isoindigo Based Small Molecules for High-Performance Solution-Processed Organic Photovoltaic Devices

  • Elsawy, W.;Lee, C.L.;Cho, S.;Oh, S.H.;Moon, S.H.;Elbarbary, A.;Lee, Jae-Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.245.2-245.2
    • /
    • 2013
  • Solution processed organic photovoltaic devices have relatively less attention compared to polymer photovoltaic devices even though they have high possibility to be developed because they have both advantages of polymer and organic, such as solution processable, no synthetic batch dependence of photovoltaic performance, high purity and high charge carrier mobility as well as relatively high efficiency (~7%). In addition, solution processed organic photovoltaic devices have an advantage of easiness to study the relationship between the molecular structure and photovoltaic performance due to its simple structure. In this work, five isoindigo based low band gap donor-acceptor-donor (D-A-D) small molecules with different electron donating strength were synthesized for investigating the relationship between the molecular structure and photovoltaic performance, especially, investigating the effects of different electron donating effect of donor group in isoindigo backbone to photovoltaic device performance. The variation of electron donating strength of donor group strongly affected the optical, thermal, electrochemical and photovoltaic device performances of isoindigo organic materials. The highest power conversion efficiency of ~3.2% was realized in bulk heterojuction photovoltaic device consisted of the ID3T as donor and PC70BM as acceptor. This work demonstrates the great potential of isoindigo moieties as electron deficient units as well as guideline for synthesis of donor-acceptor-donor (D-A-D) small molecules for realizing highly efficient solution processed organic photovoltaic devices.

  • PDF

A New Diarylethene with Donor-acceptor Group for Reversible Photo-induced Electrochemical Switching

  • Kim, Eun-Kyoung;Kim, Mi-Young;Kim, Kyong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.827-832
    • /
    • 2008
  • A new diarylethene compound with donor and acceptor substituent was synthesized from 2,3-bis(2-methylbenzo[b]thiophene-3-yl)hexafluorocyclopentene (BTF) over 5 steps. The donor-acceptor structured BTF compound (TBTFE) showed spectral change to a longer wavelength through photochromism with a high cyclization quantum yield (0.56). The 3,4-ethylenedioxythiophene (T) and carboethoxy (E) groups directly connected to BTF unit promoted electrical change accompanied with the photoisomerization of the BTF unit. Photo-induced electrical switching was achieved from a photocell containing TBTFE doped polymer film, which showed reversible and stable current change over repeated cycles by the alternative UV/Vis irradiation, as estimated by the I-V plot.

Fabrication of Photoluminescent Dye Embedded PMMA Nanofiber and its Fluorescence Resonance Energy Transfer

  • Lee, Kyung-Jin;Oh, Joon-Hak;Kim, Young-Geun;Jang, Jyong-Sik
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.314-314
    • /
    • 2006
  • The FRET property has been extensively studied from the theoretical view points to the practical applications. In case that the donor and acceptor are confined in nanodimension, the FRET effectively occurs, because of their distant dependent characteristic. However, there are no reports concerning FRET with one dimensional (1D) nanomaterial. We have successfully prepared the PMMA nanotubes using vapor deposition polymerization as the platform of FRET. The dye-PMMA composite nanofiber has also been produced without phase separation and any deterioration of properties of the dyes. The PMMA 1D nanocomposite doped two dyes with great spectral overlap between donor and acceptor displayed FRET property.

  • PDF

Modelling the Hydrogen-Bonding Interactions in a Copolymer/Biodegradable Homopolymer Blend through Excess Functions

  • Garcia-Lopera, Rosa;Monzo, Isidro S.;Campos, Agustin;Abad, Concepcion
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.446-456
    • /
    • 2008
  • A recent theoretical approach based on the coupling of both the Flory-Huggins (FH) and the Association Equilibria thermodynamic (AET) theories was modified and adapted to study the miscibility properties of a multi-component system formed by two polymers (a proton-donor and a proton-acceptor) and a proton-acceptor solvent, named copolymer(A)/solvent(B)/polymer(C). Compatibility between polymers was mainly attained by hydrogen-bonding between the hydroxyl group on the phenol unit of the poly(styrene-co-vinyl phenol) (PSVPh) and the carbonyl group of the biodegradable and environmentally friendly poly(3-hydroxybutyrate) (PHB). However, the self-association of PSVPh and specific interactions between the PSVPh and the H-acceptor group (an ether oxygen atom) of the epichlorohydrin (ECH) solvent were also established in a lower extension, which competed with the polymer-polymer association. All the binary specific interactions and their dependence with the system composition as well as with the copolymer content were evaluated and quantified by means of two excess functions of the Gibbs tree energy, ${\Delta}g_{AB}$ and ${\Delta}g_{AC}$. Experimental results from fluorescence spectroscopy were consistent with the theoretical simulations derived with the model, which could also be applied and extended to predict the miscibility in solution of any polymer blend with specific interactions.

Synthesis and Characterization of New Dihydroindolo[3,2-b]indole and 5,6-Bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-Based Polymer for Bulk Heterojunction Polymer Solar Cells

  • Kranthiraja, Kakaraparthi;Gunasekar, Kumarasamy;Song, Myungkwan;Gal, Yeong-Soon;Lee, Jae Wook;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1485-1490
    • /
    • 2014
  • We have designed and developed a new ladder type tetrafused ${\pi}$-conjugated building block such as dihydroindolo[3,2-b]indole (DINI) and investigated its role as an electron rich unit. The photovoltaic properties of a new semiconducting ${\pi}$-conjugated polymer, poly[[5,10-bisoctyl-5,10-dihydroindolo[3,2-b]indole-[5,6- bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole]], represented by PDINI-OBTC8 are described. The new polymer PDINI-OBTC8 was synthesized in donor-acceptor (D-A) fashion, where fused ${\pi}$-conjugated tetracyclic DINI, and 5,6-bis(octyloxy)-4,7-di(thiophen-2-yl) benzo[c][1,2,5]thiadiazole (OBTC8) were employed as electron rich (donor) and electron deficient (acceptor) moieties, respectively. The conventional bulk heterojunction (BHJ) device structure ITO/PEDOT:PSS/PDINI-OBTC8:PCB71M/LiF/Al was utilized to fabricate polymer solar cells (PSCs), which comprises the blend of PDINI-OBTC8 and [6,6]-phenyl-$C_{71}$-butyric acid methyl ester ($PC_{71}BM$) in BHJ network. A BHJ PSC that contain PDINI-OBTC8 delivered power conversion efficiency (PCE) value of 1.68% with 1 vol% of 1,8-diidooctane (DIO) under the illumination of A.M 1.5G 100 $mW/cm^2$.