Modelling the Hydrogen-Bonding Interactions in a Copolymer/Biodegradable Homopolymer Blend through Excess Functions

  • Garcia-Lopera, Rosa (Departament de Quimica Fisica and Institut de Ciencia dels Materials, Universitat de Valencia) ;
  • Monzo, Isidro S. (Departament de Quimica Fisica and Institut de Ciencia dels Materials, Universitat de Valencia) ;
  • Campos, Agustin (Departament de Quimica Fisica and Institut de Ciencia dels Materials, Universitat de Valencia) ;
  • Abad, Concepcion (Departament de Bioquimica i Biologia Molecular, Universitat de Valencia)
  • Published : 2008.07.31

Abstract

A recent theoretical approach based on the coupling of both the Flory-Huggins (FH) and the Association Equilibria thermodynamic (AET) theories was modified and adapted to study the miscibility properties of a multi-component system formed by two polymers (a proton-donor and a proton-acceptor) and a proton-acceptor solvent, named copolymer(A)/solvent(B)/polymer(C). Compatibility between polymers was mainly attained by hydrogen-bonding between the hydroxyl group on the phenol unit of the poly(styrene-co-vinyl phenol) (PSVPh) and the carbonyl group of the biodegradable and environmentally friendly poly(3-hydroxybutyrate) (PHB). However, the self-association of PSVPh and specific interactions between the PSVPh and the H-acceptor group (an ether oxygen atom) of the epichlorohydrin (ECH) solvent were also established in a lower extension, which competed with the polymer-polymer association. All the binary specific interactions and their dependence with the system composition as well as with the copolymer content were evaluated and quantified by means of two excess functions of the Gibbs tree energy, ${\Delta}g_{AB}$ and ${\Delta}g_{AC}$. Experimental results from fluorescence spectroscopy were consistent with the theoretical simulations derived with the model, which could also be applied and extended to predict the miscibility in solution of any polymer blend with specific interactions.

Keywords

References

  1. R. W. Lenz and R. H. Marchessault, Biomacromolecules, 6, 1 (2005) https://doi.org/10.1021/bm049700c
  2. S. Lee, Y. Lee, and J. W. Lee, Macromol. Res., 15, 44 (2007) https://doi.org/10.1007/BF03218751
  3. Y. Doi and A. Steinbuchel, Eds., Biopolymers. Polyesters I-III, Wiley-VCH, Weinheim, 2001
  4. A. L. Iordanskii, A. A. Ol'khov, Y. N. Pankova, A. P. Bonartsev, G. A. Bonartseva, and V. O. Popov, Macromol. Symp., 233, 108 (2006)
  5. C. Chen, L. Dong, and P. H. F. Yu, Eur. Polym. J., 42, 2838 (2006) https://doi.org/10.1016/j.eurpolymj.2006.07.005
  6. M. Avella, G. Bogoeva-Gaceva, A. Buzarovska, M. E. Errico, G. Gentile, and A. Grozdanov, J. Appl. Polym. Sci., 104, 3192 (2007) https://doi.org/10.1002/app.26057
  7. M. M. Coleman, J. F. Graf, and P. C. Painter, Specific Interactions and the Miscibility of Polymer Blends, Technomic Publishing, Lancaster, PA, 1991
  8. J. G. Bonner and P. S. Hope, in Polymer Blends and Alloys, M. J. Folkes and P. S. Hope, Eds., Blackie, Glasgow UK, 1993
  9. P. C. Painter and M. M. Coleman, in Polymer Blends, Volume 1: Fundamentals, D. R. Paul and C. B. Bucknall, Eds., John Wiley and Sons, New York, 2000
  10. P. Dacko, M. Kowalczuk, H. Janeczek, and M. Sobota, Macromol. Symp., 239, 209 (2006)
  11. Y. Hu, J. Zhang, H. Sato, Y. Futami, I. Noda, and Y. Ozaki, Macromolecules, 39, 3841 (2006) https://doi.org/10.1021/ma060208q
  12. E. Chiellini and R. Solaro, Recent Advances in Biodegradable Polymer and Plastics, Wiley-VCH, Weinheim, 2003
  13. P. Iriondo, J. J. Iruin, and M. J. FernIndez-Berridi, Polymer, 36, 3235 (1995) https://doi.org/10.1016/0032-3861(95)97888-M
  14. P. X. Xing, L. S. Dong, Y. X. An, Z. L. Feng, M. Avella, and E. Martuscelli, Macromolecules, 30, 2726 (1997) https://doi.org/10.1021/ma960615+
  15. J. N. Hay and L. Sharma, Polymer, 41, 5749 (2000) https://doi.org/10.1016/S0032-3861(99)00807-1
  16. T. H. Abou-Aiad, M. Z. El-Sabee, K. N. Abd-El-Nour, G. R. Saad, A. El-Sayed, and E. A. Gaafar, J. Appl. Polym. Sci., 86, 2363 (2002) https://doi.org/10.1002/app.11137
  17. E. D. Paglia, P. L. Beltrame, M. Canetti, A. Seves, B. Marcandalli, and E. Martuscelli, Polymer, 34, 996 (1993) https://doi.org/10.1016/0032-3861(93)90220-5
  18. P. Sadocco, M. Canetti, A. Seves, and E. Martuscelli, Polymer, 34, 3368 (1993) https://doi.org/10.1016/0032-3861(93)90462-J
  19. S. H. Goh and X. Ni, Polymer, 40, 5773 (1999) https://doi.org/10.1016/S0032-3861(98)00683-1
  20. L. Zhao, Y. He, and Y. Inoue, Macromol. Chem. Phys., 206, 841 (2005) https://doi.org/10.1002/macp.200400531
  21. H. Sato, R. Murakami, J. Zhang, Y. Ozaki, K. Mori, I. Takahasi, H. Terauchi, and I. Noda, Macromol. Res., 14, 408 (2006) https://doi.org/10.1007/BF03219103
  22. E. Eastwood, S. Viswanathan, C. P. O'Brien, D. Kumar, and M. D. Dadmun, Polymer, 46, 3957 (2005) https://doi.org/10.1016/j.polymer.2005.02.073
  23. J. E. Figueruelo, B. Celda, and A. Campos, Macromolecules, 18, 2504 (1985) https://doi.org/10.1021/ma00154a026
  24. J. E. Figueruelo, A. Campos, and B. Celda, Macromolecules, 18, 2511 (1985) https://doi.org/10.1021/ma00154a027
  25. A. Campos, R. Gavara, R. Tejero, C. Gmez, and B. Celda, J. Polym. Sci.; Part B: Polym. Phys., 27, 1599 (1989) https://doi.org/10.1002/polb.1989.090270802
  26. A. Campos, C. M. Gmez, R. Garc'a, J. E. Figueruelo, and V. Soria, Polymer, 37, 3361 (1996) https://doi.org/10.1016/0032-3861(96)88483-7
  27. M. Xiang, M. Jiang, Y. Zhang, and Ch. Wu, Macromolecules, 30, 5339 (1997) https://doi.org/10.1021/ma970186v
  28. J. A. Gonzlez-Len and A. M. Mayes, Macromolecules, 36, 2508 (2003) https://doi.org/10.1021/ma0209803
  29. W. P. Hsu, J. Appl. Polym. Sci., 96, 2064 (2005) https://doi.org/10.1002/app.21669
  30. M. H. Yin and S. X. Zheng, Macromol. Chem. Phys., 206, 929 (2005) https://doi.org/10.1002/macp.200400512
  31. J. Pouchly and A. Zivny, Makromol. Chem., 186, 37 (1985) https://doi.org/10.1002/macp.1985.021860105
  32. A. Horta, D. Radic, and L. Gargallo, Macromolecules, 22, 4267 (1989) https://doi.org/10.1021/ma00201a022
  33. V. Soria, J. E. Figueruelo, C. Abad, and A. Campos, Macromol. Theor. Simul., 13, 441 (2004) https://doi.org/10.1002/mats.200300047
  34. Y. Park, B. Veytsman, M. Coleman, and P. Painter, Macromolecules, 38, 3703 (2005) https://doi.org/10.1021/ma0473115
  35. C.-L. Lin, W.-C. Chen, S.-W. Kuo, and F.-C. Chang, Polymer, 47, 3436 (2006) https://doi.org/10.1016/j.polymer.2006.03.071
  36. V. Soria, J. E. Figueruelo, C. M. Gmez, C. Abad, and A. Campos, Macromol. Theor. Simul., 16, 53 (2007) https://doi.org/10.1002/mats.200600050
  37. G. ten Brinke and F. E. Karasz, Macromolecules, 17, 815 (1984) https://doi.org/10.1021/ma00134a049
  38. I. C. Sanchez and A. C. Balazs, Macromolecules, 22, 2325 (1989) https://doi.org/10.1021/ma00195a056
  39. C. Panayiotou and I. C. Sanchez, Macromolecules, 24, 6231 (1991) https://doi.org/10.1021/ma00023a027
  40. I. C. Sanchez and C. Panayiotou, Thermodynamic modeling, in Models for thermodynamic and phase equilibria calculations, S. I. Sandler, Ed., Marcel Dekker, Boca Raton, 1993
  41. J. Cho, Macromolecules, 37, 10101 (2004) https://doi.org/10.1021/ma0483569
  42. D. Y. Ryu, C. Shin, J. Cho, D. H. Lee, J. K. Kim, K. A. Lavery, and T. P. Russell, Macromolecules, 40, 7644 (2007) https://doi.org/10.1021/ma070754z
  43. C. M. Jung, Y. C. Bae, and J.-J. Kim, Macromol. Res., 15, 682 (2007) https://doi.org/10.1007/BF03218950
  44. R. Garca-Lopera, I. S. Monzo, C. Abad, and A. Campos, Eur. Polym. J., 43, 231 (2007) https://doi.org/10.1016/j.eurpolymj.2006.09.015
  45. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953
  46. V. Soria, C. M. Gmez, M. Falo, C. Abad, and A. Campos, J. Appl. Polym. Sci., 100, 900 (2006) https://doi.org/10.1002/app.23011
  47. P. C. Painter, B. Veytsman, S. Kumar, S. Shenoy, J. F. Graf, Y. Xu, and M. M. Coleman, Macromolecules, 30, 932 (1997) https://doi.org/10.1021/ma960815l
  48. G. J. Pehlert, P. C. Painter, B. Veytsman, and M. M. Coleman, Macromolecules, 30, 3671 (1997) https://doi.org/10.1021/ma961827+
  49. A. Gnzalez Vives, Miscibility and transport properties of PHB blends, Ph.D. Thesis, Universidad del Pa's Vasco, Spain, 2002
  50. H. Siu and J. Duhamel, Macromolecules, 39, 1144 (2006) https://doi.org/10.1021/ma0519563
  51. Y. Mylonas, G. Bokias, I. Iliopoulos, and G. Staikos, Eur. Polym. J., 42, 849 (2006) https://doi.org/10.1016/j.eurpolymj.2005.09.024
  52. J. E. Figueruelo, M. Falo, C. M. Gmez, C. Abad, and A. Campos, J. Liq. Chromatogr. Rel. Technol., 29, 1331 (2006) https://doi.org/10.1080/10826070600599579
  53. C. M. Gmez, A. Codoer, A. Campos, and C. Abad, J. Colloid Interf. Sci., 251, 172 (2002) https://doi.org/10.1006/jcis.2002.8381