• Title/Summary/Keyword: Dominant eye power

Search Result 6, Processing Time 0.018 seconds

The Comparative Research of Dominant Eye and Non-dominant Eye by Ages (연령대별 우세안과 비우세안의 비교 연구)

  • Lee, Wan-Seok;Ye, Ki-Hun;An, Sun-Joung;Shin, Bum-Joo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.2
    • /
    • pp.203-211
    • /
    • 2013
  • Purpose: When we look at the object, we used the dominant eye mainly. For this reason, a prescription of the dominant eye is an important factor for glasses and contact lenses. This study evaluated visual acuity differences between dominant and nondominant eyes through analyzing refractive power changes in both eyes by the ages. Methods: This study was performed to investigate the relationship between refractive error and dominant eye which had the superiority in the function of binocular. 186 subjects without ocular disease were examined on the dominant eye. The dominant eye was examined by the Hole-in-the-card test. For the consistency of the measurements, we tested refractive power in three times by the same person. Results: Using SPSS, the relationship between vision and the dominant eye was analyzed. 135 people of the whole subjects have the dominant eye on right. The Number of the non-dominant eye is 51. We were divided into 3 types, the group under the age of 10 that begins to expose environment factor affect on vision (the average age $8.8{\pm}1.18$) and the age group of 10 to 20 that begins to change refractive power in earnest (the average age $14.1{\pm}2.58$) and the group after the age 20 that began to stabilize vision (the average age $51.8{\pm}17.51$). The visual acuity of dominant eye was higher than non-dominant eye in all age groups. Nevertheless, these results were not statistically significant. Mean astigmatism of dominant eye was smaller than the non-dominant eye, and this is significant, statistically (p=0.017<0.05). Conclusions: It is expected that the balanced eye with a lower level of astigmatism has a more possibility become a dominant eye.

Changes of Stereoacuity with Correction in Induced Anisometropia (유발된 부동시의 교정에 따른 입체시 변화)

  • Choi, Jin Young;Kim, Jai-Min;Kim, Hyun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.121-126
    • /
    • 2008
  • Purpose: To study the minimum diopter of spherical lens with normal binocular function in induced anisometropia by over-correction or under-correction in single eye. Methods: Stereoacuity of subjects without ophthalmic disease history in their twenties was measured by using Titmus-fly stereotest at 40 cm after overcorrection or under-correction in non-dominant eye or dominant eye, respectively. Results: In induced anisometropia, the stereoacuity decreased with increase of the power of added spherical lens in either nondominant eye or dominant eye. And the first reduction of stereoacuity was more prominent with the addition of (+) spherical lens than (-) spherical lens. In addition, there was more strikingly decrement of stereoacuity with addition of spherical lens to dominant eye than non-dominant eye. Conclusions: In induced anisometropia, the most outstanding reduction of stereoacuity was obtained with increment of the power of added (+) spherical lens in case of non-dominant eye with full correction and dominant eye with addition of spherical lens.

  • PDF

The Direction and Level of Dominant Eye According to the Tests (검사방법에 따른 우세안의 방향 및 강도의 비교)

  • Shim, Jun-Beom;Joo, Seok-Hee;Shim, Hyun-Suk
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.363-368
    • /
    • 2015
  • Purpose: In this study, dominant eye is monitoring and level of dominant was measured in subjective and objective test. Methods: The average age of 21.08 years old of 129 adult (69 male, 60 female) who was no underlying ocular disease were participated in this study. dominant eye was determined by monocular instrument in subjecttive test and using a thin ring ($3.8cm{\times}3.8cm$) in objective test and level of dominant was measured direction of movement of the thin rim. Results: In the subjective test, there are 100 (77.52%) subjects whose dominant eye was right eye, and 29 (22.48%) subjects whose dominant eye was left eye. In the objective test, 90 (69.77%) subjects had right eye d and 33 (25.58%) subjects had left eye, as dominant eye, and 6 (4.65%) subjects had no dominant eye. Comparison of subjective test and objective test by dominant eye were equal in the 104 (80.62%) subjects, unequal in the 19 (14.73%) and center 6 (4.65%) subjects. The level of dominant eye in objective dominant eye test, there were middle 52 (57.78%) subjects, high 38 (42.22%) subjects in the right eye, and middle 25 (75.76%) subjects, high 8 (24.24%) subjects in the left eye. Conclusions: In this study O - Ring Test hasadvantage of direction and level of dominant eye, and middle or center dominant eye was shown in unequal. From this results, testing of dominant eye should be relationship equal and unequal, also required to be study in dominant eye level in binocular vision.

Comparison of Stereopsis by Influence Factors in Induced Aniseikonia (유발 부등상시에서 영향인자에 따른 입체시의 비교)

  • Jung, Su A;Kim, Hyun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.465-471
    • /
    • 2013
  • Purpose: This study was conducted to research effects of influence factors on stereopsis of induced aniseikonia in emmetropia. Methods: 20 college students (a mean age of $22.50{\pm}2.72$ years, 14 males, 6 females) were selected as subjects and all of them had no ocular disease or systemic disease, the refractive correction of spherical equivalent within ${\pm}0.50$ D, the corrected visual acuity of 1.0 or better and the aniseikonia values less than 1% by AWAYA. Subject's dominant eye was checked by Hole in card method and contact lenses of -7.00 ~ +7.00D were fitted to cause anisometropia in dominant eye or non-dominant eye, respectively. And then aniseikonia was induced with spectacles to correct refractive error by contact lenses. Stereopsis was measured by Random Dot Stereo Acuity Test with LEA symbols$^{(R)}$ (Vision Assessment Corporation$^{TM}$, USA). Results: Stereopsis was remarkably reduced by inducing aniseikonia, with induced aniseikonia in dominant eye, with higher diopter of wearing contact lenses to induce anisometropia, with spectacles lenses correction of minus power after fitting contact lenses with plus power and in case of men. Conclusions: It should be considered to correct anisometropia that aniseikonia could cause reduction of stereopsis.

An Case-Study on the Constructing Process of Power in Cyberspace (가상공간에서의 권력형성과정에 대한 사례 연구)

  • Lee, Oh-Hyeon
    • Korean journal of communication and information
    • /
    • v.23
    • /
    • pp.79-112
    • /
    • 2003
  • The purpose of this study is to explore the way that power in cyberspace is constructed and work and the factors that contribute to forming the power by analyzing a bulletin board system(BBS) on an everyday drama, "Can't Take My Eye Off You"(MBC). Research findings are as follows. The participants in the BBS produce various discourses and constantly compete with each other. In the process, the participants who produce a dominant discourse in quantity tend to exclude other discourses from the BBS and the participants who produce the minority discourses sometimes resist the dominant discourse but tend to refrain from expressing the minority discourses. These tendencies have intensified, and eventually the dominant discourse overwhelmingly powers over the BBS at the end of it. The dominant discourse in the BBS is confucian patriarchal one and this is primarily due to the characteristic of the BBS as the fandom of the drama, the participants' experience and dominant culture in their embodied social world, and the authorship of the drama.

  • PDF

Changes in KVA Resulting from Correction Condition of Refractive Error (굴절이상 교정상태에 따른 동적시력 변화)

  • Shim, Hyun-Suk;Kim, Sang-Hyun;Kang, Hye-Sook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • Purpose: This study are to analyze and to compare between pupillary size, reaction time, refractive error, corrected vision, dominant eye, static visual angle (SVA) and kinetic visual acuity (KVA) of male and female college students, to measure KVA of them in full correction and to identify changes of KVA by +0.50 D and -0.50 D spherical power addition respectively in full correction condition. Methods: KVA, SVA, pupillary size, reaction time, refractive error, corrected vision and dominant eye of 40 male and 40 female optical science students were measured by utilizing KOWA AS-4A, reaction time measurement program, subjective refractometer, and objective refractometer, and KVAs were measured when +0.50 D/-0.50 D were added in both eyes respectively. Results: Binocular KVA of whole subjects was $0.45{\pm}0.22$, and in monocular KVAs were $0.36{\pm}0.19$ for right eye and $0.34{\pm}0.19$ for left eye, and binocular KVA was significantly higher than monocular KVA. It appeared that the better SVA was, the better KVA was in significant way, and in terms of refractive error the less myopia amount was, the better KVA was, but it was not significant statistically. The lower astigmatism was, the slightly and significantly higher KVA was when dividing between equal or less than -1.00 D astigmatism group and over -1.00 D astigmatism group. In resulting from correction condition of refractive error KVAs were $0.45{\pm}0.22$ for full correction, $0.26{\pm}0.15$ for +0.50 D addition, $0.48{\pm}0.22$ for -0.50 D addition which indicates that KVA in over myopia correction was significantly the highest and followed by full correction and under correction. Similar findings were revealed in both male and female, and KVA of male was better than female in comparing between male and female. There was no significantly different KVA between dominant eye and non-dominant eye. Conclusions: Accordingly, it is concluded that KVA is related with far distance SVA, astigmatism amount, and refractive error amount except a dominant eye. Through this research, it was found that prescription for enhancing KVA is to make full correction or to overcorrect slightly myopia.