• Title/Summary/Keyword: Domestic electricity

Search Result 214, Processing Time 0.032 seconds

Comparative Analysis of Seawater Desalination Technology in Korea and Overseas (국내 및 해외의 해수담수화 기술 비교분석)

  • Hwang, Moon-Hyun;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.255-268
    • /
    • 2016
  • Climate change has increased the need to secure a new water resource in addition to the traditional water resources such as surface water and ground water. The seawater desalination market is growing sharply in accordance with this situation in Korea, "seawater engineering & architecture of high efficiency reverse osmosis (SEAHERO)" program was launched in 2007 to keep pace with world market trend. SEAHERO program was completed in 2014, contributed to turn the domestic technology in evaporative desalination technology to RO desalination technology. Currently, it is investigated that the average specific energy consumption of the whole RO plant is around $3.5kWh/m^3$. The Busan Gi-jang plant has shown $3.7{\sim}4.0kWh/m^3$, including operational electricity for plant and maintenance building. Although not world top level, domestic RO technology is considered to be able to compete in desalination market. Separately, many researchers in the world are developing new technologies for energy savings. Various processes, forward osmosis (FO), membrane distillation (MD) process are expected to compete with RO in the future market. In Korea, FO-RO hybrid process, MD and pressure retarded osmosis (PRO) process are under development through the research program in Ministry of Land, Infrastructure and Transport (MOLIT). The desalination technology level is expected to decrease to $2.5kWh/m^3$.

Development of Charging Algorithm for the Low Cost EV Charger (저가형 전기자동차 충전기를 위한 충전 알고리즘 개발)

  • Park, Dae-Su;Kim, Tae-Kyung;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.590-595
    • /
    • 2016
  • The US is pursuing a plan to raise the subsidies for electric vehicles by more than 30%. The number of electric vehicles in Europe is expected to be one million by 2020 and 2030 and there are plans to expand in the center of Germany to supply six million electric vehicles on the dissemination and development policies. The development of the electric vehicle is not simply a technical trend but there is the potential to improve the access to this technology and the possibility of changing the entire social system and long-term energy security. Domestic competition is also increasing the supply of electric vehicles, as new blue ocean markets are emerging. The current domestic On-board Charger (Home Charger) plans to be suspended from the 2015 government-sponsored installation, This paper on the IEC 61851-1 and IEC 61851-22 specifications analyzes the development of a midnight electricity charger as a low-cost algorithm, the decrease in price and the improved convenience of the On-board Charger for Bluetooth module with the ATmega128 existing charger system, and the UI configuration via the LCD Panel to a Smartphone app are proposed.

A study on Analysis of Convergence Trends in Global BIM Market Using Patent Information (BIM 기술 융·복합 수준 분석을 위한 특허 정보 활용 방안)

  • Kim, Taewon;Lee, Jaeho;Lee, Yoonsun;Kim, Jaejun;Lee, Taisik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.3
    • /
    • pp.95-104
    • /
    • 2017
  • Recently, patent information related to building information modeling (BIM) has been increasing owing to BIM adoption within the construction sector. However, only a few research studies have focused on identifying trends in the domestic and foreign BIM technology based on comprehensive and objective data. Therefore, this study aims to analyze technical competitiveness in the global BIM market using patent information. The patent information is compiled from WIPSON and consists of 73 South Korea, 59 USA, 206 China, and 31 Japan applications. Based on patent information, this study objectively observes domestic and foreign technological BIM trends. As a result of the technology entry analysis by the year, starting from physics (G section) to electricity (H section), the performing operations (B section), and the fixed structure (E section) has been expanded gradually. According to the portfolio analysis, the BIM patent is currently in its early stage of development. Through this research, utilizing patents as a basis for future development will be expected to consult with the differentiation of strategy and setting of direction.

A Study on the Concept of Operations and Improvement of the Design Methodology for the Physical Protection System of the National Infrastructure - Focused on Nuclear Power Plants - (국가기반시설 물리적 방호체계 운영개념 및 설계방법 개선방안 연구: 원자력발전소를 중심으로)

  • Na, Seog-Jong;Sung, Ha-Yan;Choi, Sun-Hee
    • Korean Security Journal
    • /
    • no.61
    • /
    • pp.9-38
    • /
    • 2019
  • As the scales & density of the Korean national infrastructures have been increased, they will be identified as rich and attractive potential targets for intensified North Korea's attack in the rear region and terrorism attack. In addition, due to changes in security environment such as drone threats and lack of security forces under the 52-hour workweek law, I think that it is the proper time point to reevaluate the effectiveness and appropriateness of the current physical protection system and its shift to a new system. In this study, the direction and improvement of the perimeter physical protection systems of the national infrastructures are to be studied from the viewpoints of its concepts of operations and design methodology, focusing on the nuclear power plant. The reason why we focus on nuclear power plants is because they cause wide-range and long-term damages caused by radioactive materials disperal and pollution, along with short-term damage caused by the interruption of electricity generation in the event of damage to nuclear power plants. With the aim of extracting improvement directions, as we will comprehensively review domestic research trends and domestic·overseas related laws, and consider Korea's specificity, we try to reframe the concept of operation - systematization, mobilization and flexibility -, and establish criteria on system change. In order to improve the technical performance of the new perimeter physical protection system, we study on high-fidelity·multi-methodology based integrated design methodology, breaking from individual silo-type design methods, and I suggest improvement of government procurement, its expansion to export business and other national infrastructure.

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector (에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰)

  • Han Saem Park;Jae Won An;Ha Eun Lee;Hyun Jun Park;Seung Seok Oh;Jester Lih Jie Ling;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

The Contribution of Innovation Activity to the Output Growth of Emerging Economies: The Case of Kazakhstan

  • Smagulova, Sholpan;Mukasheva, Saltanat
    • Journal of Distribution Science
    • /
    • v.10 no.7
    • /
    • pp.33-41
    • /
    • 2012
  • The purpose of this study is to analyse the state of the energy industry and to determine the efficiency of its functioning on the basis of energy conservation principle and application of innovative technologies aimed at improving the ecological modernisation of agricultural sectors of Kazakhstan. The research methodology is based on an integrated approach of financial and economic evaluation of the effectiveness of the investment project, based on calculation of elasticity, total costs and profitability, as well as on comparative, graphical and system analysis. The current stage is characterised by widely spread restructuring processes of electric power industry in many countries through introduction of new technical installations of energy facilities and increased government regulation in order to enhance the competitive advantage of electricity market. Electric power industry features a considerable value of creating areas. For example, by providing scientific and technical progress, it crucially affects not only the development but also the territorial organisation of productive forces, first of all the industry. In modern life, more than 90% of electricity and heat is obtained by Kazakhstan's economy by consuming non-renewable energy resources: different types of coal, oil shale, oil, natural gas and peat. Therefore, it is significant to ensure energy security, as the country faces a rapid fall back to mono-gas structure of fuel and energy balance. However, energy resources in Kazakhstan are spread very unevenly. Its main supplies are concentrated in northern and central parts of the republic, and the majority of consumers of electrical power live in the southern and western areas of the country. However, energy plays an important role in the economy of industrial production and to a large extent determines the level of competitive advantage, which is a promising condition for implementation of energy-saving and environmentally friendly technologies. In these circumstances, issues of modernisation and reforms of this sector in Kazakhstan gain more and more importance, which can be seen in the example of economically sustainable solutions of a large local monopoly company, significant savings in capital investment and efficiency of implementation of an investment project. A major disadvantage of development of electricity distribution companies is the prevalence of very high moral and physical amortisation of equipment, reaching almost 70-80%, which significantly increases the operating costs. For example, while an investment of 12 billion tenge was planned in 2009 in this branch, in 2012 it is planned to invest more than 17 billion. Obviously, despite the absolute increase, the rate of investment is still quite low, as the total demand in this area is at least more than 250 billion tenge. In addition, industrial infrastructure, including the objects of Kazakhstan electric power industry, have a tangible adverse impact on the environment. Thus, since there is a large number of various power projects that are sources of electromagnetic radiation, the environment is deteriorated. Hence, there is a need to optimise the efficiency of the organisation and management of production activities of energy companies, to create and implement new technologies, to ensure safe production and provide solutions to various environmental aspects. These are key strategic factors to ensure success of the modern energy sector of Kazakhstan. The contribution of authors in developing the scope of this subject is explained by the fact that there was not enough research in the energy sector, especially in the view of ecological modernisation. This work differs from similar works in Kazakhstan in the way that the proposed method of investment project calculation takes into account the time factor, which compares the current and future value of profit from the implementation of innovative equipment that helps to bring it to actual practise. The feasibility of writing this article lies in the need of forming a public policy in the industrial sector, including optimising the structure of energy disbursing rate, which complies with the terms of future modernised development of the domestic energy sector.

  • PDF

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Performance and Economic Analysis of Domestic Supercritical Coal-Fired Power Plant with Post-Combustion CO2 Capture Process (국내 초임계 석탄화력발전소에 연소 후 CO2 포집공정 설치 시 성능 및 경제성 평가)

  • Lee, Ji-Hyun;Kwak, No-Sang;Lee, In-Young;Jang, Kyung-Ryoung;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.365-370
    • /
    • 2012
  • In this study, Economic analysis of supercritical coal-fired power plant with $CO_2$ capture process was performed. For this purpose, chemical absorption method using amine solvent, which is commercially available and most suitable for existing thermal power plant, was studied. For the evaluation of the economic analysis of coal-fired power plant with post-combustion $CO_2$ capture process in Korea, energy penalty after $CO_2$ capture was calculated using the power equivalent factor suggested by Bolland et al. And the overnight cost of power plant (or cost of plant construction) and the operation cost reported by the IEA (International Energy Agency) were used. Based on chemical absorption method using a amine solvent and 3.31 GJ/$tonCO_2$ as a regeneration energy in the stripper, the net power efficiency was reduced from 41.0% (without $CO_2$ capture) to 31.6% (with $CO_2$ capture) and the levelized cost of electricity was increased from 45.5 USD/MWh (Reference case, without $CO_2$ capture) to 73.9 USD/MWh (With $CO_2$ capture) and the cost of $CO_2$ avoided was estimated as 41.3 USD/$tonCO_2$.

Solar Power Plant Location Analysis Using GIS and Analytic Hierarchy Process (GIS와 계층분석법을 이용한 태양광 발전소 입지 분석)

  • LEE, Ki-Rim;LEE, Won-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.1-13
    • /
    • 2015
  • The interest in renewable energy which can reduce greenhouse gas emissions has risen in the world including Korea. In Korea, solar energy generation accounts for a major percentage of electricity production using renewable energy and the solar power plants have been increasingly installed in Korea. The problem is, however, that researches on the location selection of solar power plants are unreasonably insufficient although the photovoltaic technology of the domestic solar power plants has been evolving. Thus, advanced solar energy technology could not be fully used. What is more, the indiscriminate installation of the solar power plants seriously damages the nature environment. In this study, conditions of the power plants location are analyzed in consideration of the social, cultural, environmental, economic factors and the optimum location is selected by visualizing and weighing various factors through the analytic hierarchy process. This study shows that the problem caused by the indiscriminate installation of a solar power plant could be prevented by determining the location after considering the influence of several factors. This paper would be helpful not only for the selection of location for solar plant installation in progress, but also for taking follow-up measures on the existing solar power plants placed wrongly.

A Pre-Feasibility Test of Introducing Renewable Energy Hybrid Systems -Case Studies for 3 Off-Grid Islands- (도서지역 신·재생복합 전력시스템 보급 타당성 분석 -3개 도서지역 분석결과-)

  • Jang, HaNa;Kim, Suduk
    • Environmental and Resource Economics Review
    • /
    • v.15 no.4
    • /
    • pp.693-712
    • /
    • 2006
  • A pre-feasibility test is done for renewable energy hybrid power systems at off~grid islands in which the current power supply is provided only by diesel generation. We apply Homer (Hybrid Optimization Model for Electric Renewables) which was developed by the National Renewable Energy Laboratory (NREL) for the analysis to identify the cost-minimizing combination of power generating facilities for the given load profiles. Chuja-Do, Geomun-Do and Youngsan-Do have been selected for our analysis considering the wind resources data of the Korea Institute of Energy Research (KIER). Information on wind speed, solar radiation and temperature is also used for the analysis. System component cost information from overseas market has been used due to the lack of domestic information. Site specific Load profile for electricity demand for those islands are reconstructed based on the partial survey results obtained form other sources. The LCOE of the least cost hybrid power systems for Chuja-Do, Geomun-Do and Youngsan-Do are $0.278/kWh, $0.234/kWh and $0.353/kWh, respectively Considering the fact that diesel generation is being subsidized at the price of $0.300/kWh by the government, first 2 cases are economically feasible for the introduction of renewable energy hybrid systems to those islands. But the third case of Youngsan-Do does not meet the criteria. The basic differences of these pre-feasibility test results are from the differences of the site specific renewable energy conditions, especially wind resources. In summary, promoting hybrid systems in the off-grid remote island should be based on the economic feasibility test results. Not all the off-grid islands are feasible for introducing this renewable energy hybrid system.

  • PDF