• Title/Summary/Keyword: Domestic applicability

Search Result 357, Processing Time 0.023 seconds

A evaluation study of a fire smoke diffusion delay device installed in a great depth underground double deck tunnel (대심도 복층터널에 설치 가능한 화재연기 확산지연장치 성능 평가 연구)

  • Shin, Tae-Gyun;Moon, Jung-Joo;Yang, Yong-Won;Lee, Yun-Taek
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.225-234
    • /
    • 2018
  • Domestic urban areas are experiencing serious traffic congestion problems due to continuous population growth and increased traffic volume. In order to solve the problem of traffic congestion, the study of great depth underground double deck tunnels using underground space is being actively carried out in the urban areas. The characteristics of great depth underground double deck tunnels are low in cross section, so the spread of fire smoke is expected to spread faster than the road tunnel in case of fire. Therefore, it is necessary to provide a fire smoke delay device which delays the spread of fire smoke when a fire occurs in a tunnels. In the previous study, the diffusion effect was analyzed according to the blocking area when the fire smoke spread delay device was operated through the 3D CFD in the study of preventing the smoke spread in the case of the tunnel fire. A study on fire smoke diffusion delay device using spring elasticity which is excellent in applicability to a tunnel and economical value is studied. In this study, fire smoke spread delay system was developed to fire smoke delay was experimentally analyzed. Fire smoke delay effect of fire smoke delay device appeared. Therefore, it is considered that the can minimize the damage of the victims when installed in the great depth underground double deck tunnels.

Prediction of Loss of Life in Downstream due to Dam Break Flood (댐 붕괴 홍수로 인한 하류부 인명피해 예측)

  • Lee, Jae Young;Lee, Jong Seok;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.879-889
    • /
    • 2014
  • In this study, to estimate loss of life considered flood characteristics using the relationship derived from analysis of historical dam break cases and the factors determining loss of life, the loss of life module applying in LIFESim and loss of life estimation by means of a mortality function were suggested and applicability for domestic dam watershed was examined. The flood characteristics, such as water depth, flow velocity and arrival time were simulated by FLDWAV model and flood risk area were predicted by using inundation depth. Based on this, the effects of warning, evacuation and shelter were considered to estimate the number of people exposed to the flood. In order to estimate fatality rates based on the exposed population, flood hazard zone is assigned to three different zones. Then, total fatality numbers were predicted after determining lethality or mortality function for each zone. In the future, the prediction of loss of life due to dam break floods will quantitatively evaluate flood risk and employ to establish flood mitigation measures at downstream applying probabilistic flood scenarios.

Evaluation of Ground Properties for Marine Ground in Pusan Area using Elastometer-200 Type (Elastometer-200을 이용한 부산지역 해저지반의 지반특성치 평가)

  • 김동철;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.83-94
    • /
    • 2000
  • Applicability of PMT in domestic area, test procedure, and methods determining the shear strength parameters $(cu,\phi)$and deformation character (E) using PMT results were studied. At six test boreholes of three construction sites in Pusan, PMT using Elastometer-200 type was performed. The problems occurring during tests were investigated and the test results were analysed.In-situ total horizontal stress could be obtained by observation from pressuremeter curve and limit pressure, p could be determined by $p-log(\Deltav/v)$ method. Shear strength parameters$(cu,\phi)$ and deformation modulus(G, E) could be determined from the PMT results. But effective friction angle and undrained cohesion determined from PMT results were greater than those obtained from laboratory test.Using PMT results, marine soil in Pusan could be classified approximately. Net limite pressure values were in the range of 6.4~22.5 $kg/cm^2$, in clay, 2.2~30.$kg/cm^2$, in sand, 13.0~58.0$kg/cm^2$, in weathered soil and 47.0~190.0 $kg/cm^2$, in weathered rock. Also, Em/p values were in the range of 2.4~7.0 in clay, 2.6~12.1 in sand, 6.8~17.1 in weathered soil and 7.2~29.6 in weathered rock.

  • PDF

Applicability of Water Resource Specialized Satellites for Observing Disasters on the Korean Peninsula (한반도 수재해 관측을 위한 수자원 위성의 적용성)

  • KIM, Dong-Young;BAECK, Seung-Hyub;PARK, Gwang-Ha;HWANG, Eui-Ho;CHAE, Hyo-Sok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.85-97
    • /
    • 2017
  • In recent years, the damage scales of water disasters such as typhoons, tsunamis, and heavy snow have been increasing globally as a result of global warming and climate changes. In particular, the economic loss caused by typhoons has been increasing for overpopulated areas that have undergone economic development and urbanization since the 1960s. In this study, we investigated and analyzed satellite images captured before and after typhoons on the Korean peninsula, including Typhoon Chaba (2016), Typhoon Rusa ('02), and Typhoon Maemi ('03). There was a limitation in utilizing existing satellites. Domestic satellites have mostly been developed and operated for the observation of the weather, ocean, and topography, as well as for use in communication. There are therefore insufficient temporal and spatial observations for water management and disaster response. In this work, we expanded the scope to overseas satellites and collected data from GMS, TRMM, COMS, and GPM. In the future, it will be necessary to develop and launch water resources satellites that can provide sufficient temporal and spatial data analysis units to obtain rapid and accurate water hazard information for the Korean peninsula.

A Study on the Coordinate-based Intersection ID Composition System Using Space Filling Curves (공간 채움 곡선을 활용한 좌표 기반의 교차로 ID 구성 체계에 관한 연구)

  • Lee, Eun il;Park, Soo hong;Kim, Duck ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.124-136
    • /
    • 2019
  • Autonomous driving at intersections requires assistance by exchanging traffic information between traffic objects due to the intersection of various vehicles and complicated driving environment. For this reason, traffic information exchange between adjacent intersections is required, but the node ID representing the intersection in the Korean standard node link system have limitations in updating intersections and identifying location information of intersections through IDs due to the configuration system including serial numbers. In this paper, we designed a coordinate-based intersection ID configuration system created by processing and merging two-dimensional coordinates of intersections to include location information in the intersection ID. In order to verify the applicability of the proposed intersection ID, we applied a new intersection ID to domestic intersections and confirmed that there are no duplicate values. Coordinate-based intersection ID reduces data size by 60% compared to existing node ID, and enables spatial queries such as searching for nearby intersections and extracting intersections in specific areas in the form of boxes without GIS tools. Therefore, coordinate-based intersection ID is expected to be more scalable and utilized than existing node ID.

The Effect of CSR on Venture Companies' Managerial Performance: Considering Corporate Growth Stage (CSR 활동이 벤처기업의 경영성과에 미치는 영향: 기업의 성장단계를 구분하여)

  • Chun, Dongphil;Woo, Chungwon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.1
    • /
    • pp.225-235
    • /
    • 2020
  • The Korean government is attempting to promote technology-based start-ups and venture firms that can lead to new national growth engines being developed. Although government support policies focus on improving survival rates, strategic tools for sustainability management based on a continuing company's assumption are also relevant. Previous studies indicate corporate social responsibility (CSR) as an important strategic tool for the management of corporate sustainability. This research is an exploratory study that seeks to empirically analyze the applicability of such CSR to venture firms. Existing previous studies have been carried out by large companies and surveys, and there are limitations that do not reflect the characteristics of companies. To complement the shortcomings of previous studies and propose practical consequences, this study conducted an empirical analysis using raw data from government approval statistics to identify the growth stages of venture firms. Using the 2018 Survey of Korea Venture Firms, we identified the growth stages of domestic venture firms and used the data envelopment analysis (DEA) to investigate the effect of CSR activities on managerial efficiency. The analysis found that CSR during start-up and early growth cycles did not affect managerial performance. The organization that conducted enthusiastic CSR activities performed better than those that did not perform CSR activities since the rapid growth era. Ultimately, the scale efficiency of venture business was the highest from the rapid growth era when the CSR was not done. This study is a pioneering study that found that after the period of high growth, venture firms' CSR activities can affect managerial performance. Therefore, it is important to advise applicable policies and business decision-makers that CSR practices can be a tactical resource for improving performance of management.

A Study on Live Load Design Standards Considering Moving Load (For Shorter than 60m Span) (이동하중을 고려한 활하중 설계기준 연구 (60m 이하 교량))

  • Jin, Kyung Seok;Han, Man Yop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1261-1270
    • /
    • 2013
  • The current domestic design criteria of live load employs DL-24 load and DB-24 load. Particularly for long span bridges above 45meters, DL-24 load is forced to apply and design them, since the shearing force and the moment of DL-24 load appears more dominate than those of DB-24. But it appeared that this DL-24 load didn't meet the vehicles traveling load, which affected bridges in real use. Hence this paper defined ML-24 load similar to the load applied to real bridges and also defined a new live load model, RL-24 load, after adjusting the existing DL-24 load, which doesn't meet the moment and the shearing force of ML-24. As the result of applying and reviewing RL-24 load to simple bridges of span of 45~60m, the results satisfying both the moment and the shearing force applied to bridges in real use by traveling load were attained. Besides, the applicability of it was examined in comparison with live load models of home and abroad.

Research Methodology for the Economic Impact Assessment of Natural Disasters and Its Applicability for the Baekdu Mountain Volcanic Disaster (자연재해의 경제적 영향평가 연구방법론과 백두산화산재해에의 적용 가능성)

  • Jiang, Zhuhua;Yu, Soon-Young;Yoon, Seong-Min
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.133-146
    • /
    • 2014
  • There are many studies for the economic impact assessment of natural disasters, but there are few for volcanic disasters. Domestic academic research is not under active discussion because of the lack of national and social interest for volcanic eruption. This study investigated the research methodology for the economic impact assessment of natural disasters and discussed whether these can be applied to the economic impact analysis for the Baekdu Mountain volcanic disaster. The main findings are as follows: Firstly, Asia-Pacific region is the most affected by natural disasters and has the largest scale of damage. Asian and American Continent have the most economic damage. Secondly, Considering the types of damage caused by natural disasters and its complex structure, several methodologies that could be possible to estimate economic consequential damages have been compared. When applying each methodology to the Baekdu Mountain volcanic disaster, the scale of damage is likely to be over-estimated or under-estimated because of model-specific features. Thus, estimated values should be compared to each other after calculating the damage results. Thirdly, Japanese academic research on the volcanic disaster will be used as the starting point of the economic impact assessment studies for Baekdu Mountain. Using computer SW such as Hazus which is used in United States and RiskScape from New Zealand is also a good method to predict economic impact of the Baekdu Mountain volcanic disaster.

Filed Applicability Evaluations of Restoration Material for Underground Cavities Formed by Ground Subsidence (지반침하로 인한 지하공동 복구재료의 현장적용성 평가)

  • Bang, Seongtaek;Baek, Seungju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.3
    • /
    • pp.5-11
    • /
    • 2020
  • Recently, ground pits that have been occurring frequently in urban areas are hindering traffic flow and causing property damages and loss of human life, acting as factors that are threatening the safety of citizens. Therefore, sunken ground must be quickly restored and provisions must be made for additional damage but current domestic detailed standards regarding ground pits and accurate definitions regarding causes and measures to be taken for reoccurrences are lacking. Restoration methods of sunken ground include backfilling by reusing sunken soil or other fill material and paving the road and while this is the most often used method, this only prevents ground from sinking temporarily and can not serve as a fundamental solution. Also, additional ground pits can occur on ground that is reinforced using this method due to faulty backfill material or faulty hardening. This study used Eco-friendly High-Strength Material (EHSM) as restoration material that can be used in the restoration of underground cavities that have occurred due to ground subsidence to analyze the engineered characteristics of modified dredging clay and test pieces made from changed ratios of EHSM and weathered granite soil were uniaxial compression tests were conducted and freezing-thawing tests were conducted to study strength properties according to environmental changes of restoration material, and after tests were concluded by each level, uniaxial compression tests and dynamic elasticity tests were conducted for intensity analysis. Also, to evaluate strength characteristics of the restored ground, dynamic plate load tests were conducted to verify the improvement effectiveness of the restored ground.

A Study on Compressive Strength Estimation of Underwater Concrete Structures According to Water Depths (수중 콘크리트 구조물의 수심별 강도 추정에 관한 연구)

  • Lee, Jisung;Han, Sanghun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • Harbor facilities require long-term durability and safety, and also maintain the performance requirement until the durability life. However, existing harbor facilities are becoming superannuated with durable years and durability is declined by erosion of the sea and damage from sea. In addition, harbor facilities will be in demand for the expansion of harbor and offshore structures with rising economic power by enhancement of domestic industry and increase of import and export. Therefore, in this study, two kinds of nondestructive test (NDT) techniques (schmidt rebound hammer and ultrasonic sensor) are verified for the effective maintenance of underwater concrete structures including harbor facilities. Sea field applicability of Schmidt hammer and ultrasonic sensor was verified by comparing field test result with sea field test result and also deduced the compressive strength estimation equation by depth of the water. On the basis of the sea field test result, compressive strength estimation equation which was deduced by multiple regression analysis indicated highest accuracy compared to other equations, especially it will be more likely to be used in underwater because of the depth of water correction. In the future, if schmidt hammer and ultrasonic sensor which were invented as waterproofing are used with ROV (Remotely Operated Vehicle), it will be possible to make a diagnosis of high reliability for underwater concrete structures and set up a ubiquitous concept of NDT system.