• Title/Summary/Keyword: Domatic number

Search Result 3, Processing Time 0.02 seconds

SIGNED TOTAL κ-DOMATIC NUMBERS OF GRAPHS

  • Khodkar, Abdollah;Sheikholeslami, S.M.
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.551-563
    • /
    • 2011
  • Let ${\kappa}$ be a positive integer and let G be a simple graph with vertex set V(G). A function f : V (G) ${\rightarrow}$ {-1, 1} is called a signed total ${\kappa}$-dominating function if ${\sum}_{u{\in}N({\upsilon})}f(u){\geq}{\kappa}$ for each vertex ${\upsilon}{\in}V(G)$. A set ${f_1,f_2,{\ldots},f_d}$ of signed total ${\kappa}$-dominating functions of G with the property that ${\sum}^d_{i=1}f_i({\upsilon}){\leq}1$ for each ${\upsilon}{\in}V(G)$, is called a signed total ${\kappa}$-dominating family (of functions) of G. The maximum number of functions in a signed total ${\kappa}$-dominating family of G is the signed total k-domatic number of G, denoted by $d^t_{kS}$(G). In this note we initiate the study of the signed total k-domatic numbers of graphs and present some sharp upper bounds for this parameter. We also determine the signed total signed total ${\kappa}$-domatic numbers of complete graphs and complete bipartite graphs.

Maximum Degree Vertex Domatic Set Algorithm for Domatic Number Problem (도메틱 수 문제에 관한 최대차수 정점 지배집합 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.63-70
    • /
    • 2015
  • In the absence of a polynomial time algorithm capable of obtaining the exact solutions to it, the domatic number problem (DNP) of dominating set (DS) has been regarded as NP-complete. This paper suggests polynomial-time complexity algorithm about DNP. In this paper, I select a vertex $v_i$ of the maximum degree ${\Delta}(G)$ as an element of a dominating set $D_i,i=1,2,{\cdots},k$, compute $D_{i+1}$ from a simplified graph of $V_{i+1}=V_i{\backslash}D_i$, and verify that $D_i$ is indeed a dominating set through $V{\backslash}D_i=N_G(D_i)$. When applied to 15 various graphs, the proposed algorithm has succeeded in bringing about exact solutions with polynomial-time complexity O(kn). Therefore, the proposed domatic number algorithm shows that the domatic number problem is in fact a P-problem.

The k-Rainbow Domination and Domatic Numbers of Digraphs

  • Sheikholeslami, S.M.;Volkmann, Lutz
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.69-81
    • /
    • 2016
  • For a positive integer k, a k-rainbow dominating function of a digraph D is a function f from the vertex set V (D) to the set of all subsets of the set $\{1,2,{\ldots},k\}$ such that for any vertex $v{\in}V(D)$ with $f(v)={\emptyset}$ the condition ${\cup}_{u{\in}N^-(v)}$ $f(u)=\{1,2,{\ldots},k\}$ is fulfilled, where $N^-(v)$ is the set of in-neighbors of v. A set $\{f_1,f_2,{\ldots},f_d\}$ of k-rainbow dominating functions on D with the property that $\sum_{i=1}^{d}{\mid}f_i(v){\mid}{\leq}k$ for each $v{\in}V(D)$, is called a k-rainbow dominating family (of functions) on D. The maximum number of functions in a k-rainbow dominating family on D is the k-rainbow domatic number of D, denoted by $d_{rk}(D)$. In this paper we initiate the study of the k-rainbow domatic number in digraphs, and we present some bounds for $d_{rk}(D)$.