The k-Rainbow Domination and Domatic Numbers of Digraphs

S. M. Sheikholeslami*
Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
e-mail: s.m.sheikholeslami@azaruniv.edu
\section*{Lutz Volkmann}
Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract. For a positive integer k, a k-rainbow dominating function of a digraph D is a function f from the vertex set $V(D)$ to the set of all subsets of the set $\{1,2, \ldots, k\}$ such that for any vertex $v \in V(D)$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N^{-}(v)} f(u)=\{1,2, \ldots, k\}$ is fulfilled, where $N^{-}(v)$ is the set of in-neighbors of v. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of k-rainbow dominating functions on D with the property that $\sum_{i=1}^{d}\left|f_{i}(v)\right| \leq k$ for each $v \in V(D)$, is called a k-rainbow dominating family (of functions) on D. The maximum number of functions in a k-rainbow dominating family on D is the k-rainbow domatic number of D, denoted by $d_{r k}(D)$. In this paper we initiate the study of the k-rainbow domatic number in digraphs, and we present some bounds for $d_{r k}(D)$.

1. Introduction

Let D be a finite simple digraph with vertex set $V(D)=V$ and arc set $A(D)=A$. The order $n=n(D)$ of a digraph D is the number of its vertices. We write $d^{+}(v)=d_{D}^{+}(v)$ for the outdegree of a vertex v and $d^{-}(v)=d_{D}^{-}(v)$ for its indegree. The minimum and maximum indegree and minimum and maximum outdegree of D are denoted by $\delta^{-}=\delta^{-}(D), \Delta^{-}=\Delta^{-}(D), \delta^{+}=\delta^{+}(D)$ and $\Delta^{+}=\Delta^{+}(D)$, respectively. If $u v$ is an arc of D, then v is an out-neighbor of u and u is an in-neighbor of v, we also write $u \rightarrow v$ and say that u dominates v. For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by $N^{-}(v)=N_{D}^{-}(v)$ and

* Corresponding Author.

Received November 17, 2013; accepted July 14, 2014.
2010 Mathematics Subject Classification: 05C69, 05C20.
Key words and phrases: Digraph, k-rainbow dominating function, k-rainbow domination number, k-rainbow domatic number.
This work was supported by Azarbaijan Shahid Madani University.
$N^{+}(v)=N_{D}^{+}(v)$, respectively. Let $N^{-}[v]=N^{-}(v) \cup\{v\}$ and $N^{+}[v]=N^{+}(v) \cup\{v\}$. For $S \subseteq V(D)$, we define $N^{+}[S]=\bigcup_{v \in S} N^{+}[v]$. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. If $X \subseteq V(D)$ and $v \in V(D)$, then $A(X, v)$ is the set of arcs from X to v. The underlying graph of a digraph D is the graph G obtained by replacing each arc of a digraph by a corresponding (undirected) edge. A digraph is weakly connected if its underlying graph is connected. The weakly connected components of a digraph are its maximal weakly connected subdigraphs. Consult [12] for the notation and terminology which are not defined here. For a real-valued function $f: V(D) \longrightarrow \mathbb{R}$ the weight of f is $w(f)=\sum_{v \in V} f(v)$, and for $S \subseteq V$, we define $f(S)=\sum_{v \in S} f(v)$, so $w(f)=f(V)$.

A vertex v dominates all vertices in $N^{+}[v]$. A subset S of vertices of D is a dominating set if S dominates $V(D)$. The domination number $\gamma(D)$ is the minimum cardinality of a dominating set of D. Domination in digraphs have been studied, for example, in $[6,11,14,15,19,20]$.

For a positive integer k, a k-rainbow dominating function (kRDF) of a digraph D is a function f from the vertex set $V(D)$ to the set of all subsets of the set $\{1,2, \ldots, k\}$ such that for any vertex $v \in V(D)$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N^{-(v)}} f(u)=\{1,2, \ldots, k\}$ is fulfilled. The weight of a $\operatorname{kRDF} f$ is the value $\omega(f)=\sum_{v \in V(D)}|f(v)|$. The k-rainbow domination number of a digraph D, denoted by $\gamma_{r k}(D)$, is the minimum weight of a kRDF of D. A $\gamma_{r k}(D)$-function is a k-rainbow dominating function of D with weight $\gamma_{r k}(D)$. Note that $\gamma_{r 1}(D)$ is the classical domination number $\gamma(D)$. The k-rainbow domination number of a digraph was introduced by Amjadi, Bahremandpour, Sheikholeslami and Volkmann [1] and has been studied in [2].

The definition of the k-rainbow domination number for undirected graphs was introduced by Brešar, Henning and Rall [3] and has been studied by several authors (see for example, $[4,5,7,8,9,18]$).

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of k-rainbow dominating functions of D such that $\sum_{i=1}^{d}\left|f_{i}(v)\right| \leq k$ for each $v \in V(D)$, is called a k-rainbow dominating family (of functions) on D. The maximum number of functions in a k-rainbow dominating family (kRD family) on D is the k-rainbow domatic number of D, denoted by $d_{r k}(D)$. The case $k=1$ was defined and investigated by Zelinka [20] in 1984 as the outside-semidomatic number $d^{+}(D)=d_{r 1}(D)$.

The k-rainbow domatic number is well-defined and

$$
\begin{equation*}
d_{r k}(D) \geq k \tag{1.1}
\end{equation*}
$$

for all digraphs D, since the set consisting of the function $f_{i}: V(D) \rightarrow$ $\mathcal{P}(\{1,2, \ldots, k\})$ defined by $f_{i}(v)=\{i\}$ for each $v \in V(D)$ and each $i \in\{1,2, \ldots, k\}$, forms a kRD family on D.

The definition of the k-rainbow domatic number for undirected graphs was given by Sheikholeslami and Volkmann [17] and has been studied by several authors [10, 16].

Our purpose in this paper is to initiate the study of the k-rainbow domatic
number in digraphs. We start with some bounds on the k-rainbow domination number, and then we study basic properties for the k-rainbow domatic number of a digraph. In addition, we present some Nordhaus-Gaddum type results on the k-rainbow domatic number.

2. Bounds on the k-Rainbow Domination Number

In [1] the following bounds on the k-rainbow domination number were proved.
Proposition A. ([1]) Let $k \geq 1$ be an integer. If D is a digraph of order n, then

$$
\min \{k, n\} \leq \gamma_{r k}(D) \leq n
$$

Proposition B. ([1]) If $k \geq 1$ is an integer, and D is a digraph of order n, then

$$
\gamma_{r k}(D) \leq n-\Delta^{+}(D)+k-1
$$

Proposition 1. Let k be a positive integer. If D is a digraph of order n with the property that $\max \left\{\Delta^{+}(D), \Delta^{-}(D)\right\} \geq k$, then $\gamma_{r k}(D) \leq n-1$.
Proof. If $\Delta^{+}(D) \geq k$, then Proposition B implies that $\gamma_{r k}(D) \leq n-\Delta^{+}(D)+k-1 \leq$ $n-1$.

Assume next that $\Delta^{-}(D) \geq k$. Let $d^{-}(v)=\Delta^{-}(D)$, and let $w_{1}, w_{1}, \ldots, w_{k}$ be k in-neighbors of v. Define the function $f: V(D) \rightarrow \mathcal{P}(\{1,2, \ldots, k\})$ by $f\left(w_{i}\right)=\{i\}$ for $1 \leq i \leq k, f(v)=\emptyset$ and $f(x)=\{1\}$ otherwise. Then f is a k-rainbow dominating function of weight $\omega(f)=n-1$ and thus $\gamma_{r k}(D) \leq n-1$.

Corollary 2. Let $k \geq 1$ be an integer. If D is a digraph of order n such that $\gamma_{r k}(D)=n$, then $\max \left\{\Delta^{+}(D), \Delta^{-}(D)\right\} \leq k-1$.

For $1 \leq k \leq 2$, we show that the converse of Corollary 2 is valid.
Proposition 3. Let $k \geq 1$ be an integer such that $k \leq 2$, and let D be a digraph of order n. If $\max \left\{\Delta^{+}(D), \Delta^{-}(D)\right\} \leq k-1$, then $\gamma_{r k}(D)=n$.
Proof. If $k=1$ and $\max \left\{\Delta^{+}(D), \Delta^{-}(D)\right\} \leq k-1=0$, then D is the empty digraph and hence $\gamma_{r 1}(D)=\gamma(D)=n$.

Now let $k=2$. If $\max \left\{\Delta^{+}(D), \Delta^{-}(D)\right\} \leq k-1=1$, then the weakly components of D are directed paths or directed cycles and therefore $\gamma_{r 2}(D)=n$.

The following example will demonstrate that Proposition 3 is not valid for $k \geq 3$ in general.

Example 4. Let $k \geq 3$ be an integer. Define the digraph H by the vertex set u, v and $x_{1}, x_{2}, \ldots, x_{k-1}$ such that u and v dominate x_{i} for $1 \leq i \leq k-1$. Then $\Delta^{+}(H)=k-1$ and $\Delta^{-}(H)=2$ and therefore $\max \left\{\Delta^{+}(H), \Delta^{-}(H)\right\} \leq k-1$. Now define the function $f: V(H) \rightarrow \mathcal{P}(\{1,2, \ldots, k\})$ by $f(u)=\{1,2, \ldots, k-1\}$, $f(v)=\{k\}$ and $f\left(x_{i}\right)=\emptyset$ for $1 \leq i \leq k-1$. Then f is a k-rainbow dominating function on H of weight $\omega(f)=k$ and thus $\gamma_{r k}(H) \leq k=n(H)-1$.

Theorem 5. Let $k \geq 1$ be an integer, and let D be a digraph of order $n \geq k$. Then $\gamma_{r k}(D)=k$ if and only if $n=k$ or $n>k$ and there exists a set $A=$ $\left\{v_{1}, v_{2}, \ldots, v_{t}\right\} \subset V(D)$ with $t \leq k$ such $V(D)-A \subseteq N^{+}\left(v_{i}\right)$ for $1 \leq i \leq t$.

Proof. According to Proposition A, we note that $\gamma_{r k}(D) \geq k$. If $n=k$, then obviously $\gamma_{r k}(D)=k$. Now let $n>k$. Define the function $f: V(D) \rightarrow \mathcal{P}(\{1,2, \ldots, k\})$ by $f\left(v_{i}\right)=\{i\}$ for $1 \leq i \leq t-1, f\left(v_{t}\right)=\{t, t+1, \ldots, k\}$ and $f(x)=\emptyset$ otherwise. Then f is a k-rainbow dominating function on D of weight $\omega(f)=k$ and thus $\gamma_{r k}(D) \leq k$ and so $\gamma_{r k}(D)=k$.

Conversely, assume that $\gamma_{r k}(D)=k$. Let f be a $\gamma_{r k}(D)$-function, and let $V_{0}=$ $\{v:|f(v)|=0\}$. If $V_{0}=\emptyset$, then $n=k$. If $V_{0} \neq \emptyset$, then let $v \in V_{0}$. By definition, we have $\bigcup_{u \in N^{-(v)}} f(u)=\{1,2, \ldots, k\}$. Now let $v_{1}, v_{2}, \ldots, v_{t} \in N^{-}(v)$ all vertices in $N^{-}(v)$ with the property that $\left|f\left(v_{i}\right)\right| \neq 0$ for $1 \leq i \leq t$. Then the condition $\gamma_{r k}(D)=k$ implies that $\sum_{i=1}^{t}\left|f\left(v_{i}\right)\right|=k, t \leq k$ and $V(D)-\left\{v_{1}, v_{2}, \ldots, v_{t}\right\} \subseteq$ $N^{+}\left(v_{i}\right)$ for each $i \in\{1,2, \ldots, t\}$.

Now we prove a lower bound on the k-rainbow domination number in terms of order and maximum outdegree.

Theorem 6. Let $k \geq 1$ be an integer. If D is a digraph of order n, then

$$
\gamma_{r k}(D) \geq\left\lceil\frac{k n}{\Delta^{+}(D)+k}\right\rceil
$$

Proof. Let f be a $\gamma_{r k}(D)$-function, and let $V_{i}=\{v:|f(v)|=i\}$ for $i=0,1, \ldots, k$. Then $\gamma_{r k}(D)=\left|V_{1}\right|+2\left|V_{2}\right|+\ldots+k\left|V_{k}\right|$ and $n=\left|V_{0}\right|+\left|V_{1}\right|+\ldots+\left|V_{k}\right|$. Let $A_{0}=\left(V(D)-V_{0}, V_{0}\right)$ be the set of arcs from $V(D)-V_{0}$ to V_{0}. Since f is a $\gamma_{r k}(D)$-function, we obtain
$k\left|V_{0}\right| \leq \sum_{x y \in A_{0},}|f(x)| \leq \Delta^{+}(D)\left(\left|V_{1}\right|+2\left|V_{2}\right|+\ldots+k\left|V_{k}\right|\right)=\gamma_{r k}(D) \Delta^{+}(D)$.
Now it follows from (2.1) that

$$
\begin{aligned}
& \left(\Delta^{+}(D)+k\right) \gamma_{r k}(D)=\Delta^{+}(D) \gamma_{r k}(D)+k \gamma_{r k}(D) \\
& \geq k\left|V_{0}\right|+k\left(\left|V_{1}\right|+2\left|V_{2}\right|+\ldots+k\left|V_{k}\right|\right) \\
& =k\left(\left|V_{0}\right|+\left|V_{1}\right|+\ldots+\left|V_{k}\right|\right)+k\left(\left|V_{2}\right|+2\left|V_{3}\right|+\ldots+(k-1)\left|V_{k}\right|\right) \\
& =k n+k\left(\left|V_{2}\right|+2\left|V_{3}\right|+\ldots+(k-1)\left|V_{k}\right|\right) \\
& \geq k n
\end{aligned}
$$

and this leads to the desired bound.
The case $k=1$ of Theorem 6 can be found in [13] as Theorem 15.57, and the case $k=2$ of this bound was proved in [1].

3. Properties of the k-Rainbow Domatic Number

In this section we mainly present basic properties of $d_{r k}(D)$ and bounds on the k-rainbow domatic number of a graph.

Theorem 7. If D is a digraph of order n, then

$$
\gamma_{r k}(D) \cdot d_{r k}(D) \leq k n
$$

Moreover, if $\gamma_{r k}(D) \cdot d_{r k}(D)=k n$, then for each $k R D$ family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on D with $d=d_{r k}(D)$, each function f_{i} is a $\gamma_{r k}(D)$-function and $\sum_{i=1}^{d}\left|f_{i}(v)\right|=k$ for all $v \in V(D)$.
Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a kRD family on D such that $d=d_{r k}(D)$. Then

$$
\begin{aligned}
d \cdot \gamma_{r k}(D) & =\sum_{i=1}^{d} \gamma_{r k}(D) \leq \sum_{i=1}^{d} \sum_{v \in V(D)}\left|f_{i}(v)\right| \\
& =\sum_{v \in V(D)} \sum_{i=1}^{d}\left|f_{i}(v)\right| \leq \sum_{v \in V(D)} k=k n .
\end{aligned}
$$

If $\gamma_{r k}(D) \cdot d_{r k}(D)=k n$, then the two inequalities occurring in the proof become equalities. Hence for the kRD family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on D and for each $i, \sum_{v \in V(D)}\left|f_{i}(v)\right|=\gamma_{r k}(D)$. Thus each function f_{i} is a $\gamma_{r k}(D)$-function, and $\sum_{i=1}^{d}\left|f_{i}(v)\right|=k$ for all $v \in V(D)$.

Corollary 8. If k is a positive integer, and D is a digraph of order $n \geq k$, then

$$
d_{r k}(G) \leq n
$$

Proof. Since $n \geq k$, Proposition A leads to $\gamma_{r k}(D) \geq k$. Therefore it follows from Theorem 7 that

$$
d_{r k}(D) \leq \frac{k n}{\gamma_{r k}(D)} \leq \frac{k n}{k}=n .
$$

Corollary 9. If k is a positive integer, and D is isomorphic to the complete digraph K_{n}^{*} of order $n \geq k$, then $d_{r k}(D)=n$.

Proof. In view of Corollary 8, we have $d_{r k}(D) \leq n$. If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the vertex set of D then we define the function $f_{i}: V(D) \rightarrow \mathcal{P}(\{1,2, \ldots, k\})$ by $f_{i}\left(v_{j}\right)=$ $\{1,2, \ldots, k\}$ for $i=j$ and $f_{i}\left(v_{j}\right)=\emptyset$ for $i \neq j$, where $i, j \in\{1,2, \ldots, n\}$. Then $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a kRD family on D and thus $d_{r k}(D)=n$.

Theorem 10. If D is a digraph of order $n \geq k$, then

$$
\gamma_{r k}(D)+d_{r k}(D) \leq n+k .
$$

Proof. Applying Theorem 7, we obtain

$$
\gamma_{r k}(D)+d_{r k}(D) \leq \frac{k n}{d_{r k}(D)}+d_{r k}(D)
$$

Note that $d_{r k}(D) \geq k$, by inequality (1.1), and that Corollary 8 implies that $d_{r k}(D) \leq n$. Using these inequalities, and the fact that the function $g(x)=$ $x+(k n) / x$ is decreasing for $k \leq x \leq \sqrt{k n}$ and increasing for $\sqrt{k n} \leq x \leq n$, we obtain

$$
\gamma_{r k}(D)+d_{r k}(D) \leq \max \left\{\frac{k n}{k}+k, \frac{k n}{n}+n\right\}=n+k
$$

and this is the desired bound.
If D is isomorphic to the complete digraph K_{n}^{*} of order $n \geq k$, then $\gamma_{r k}(D)=k$ and $d_{r k}(D)=n$ by Corollary 9. Thus $\gamma_{r k}\left(K_{n}^{*}\right) \cdot d_{r k}\left(K_{n}^{*}\right)=n k$ and $\gamma_{r k}\left(K_{n}^{*}\right)+$ $d_{r k}\left(K_{n}^{*}\right)=n+k$ when $n \geq k$. This example shows that Theorems 7 and 10 are sharp.

Corollary 11. Let $k \geq 1$ be an integer, and let D be a digraph of order $n \geq k$. If $\gamma_{r k}(D)=n$, then $d_{r k}(D)=k$.

Proof. Inequality (1.1) shows that $d_{r k}(D) \geq k$. Furthermore, it follows by Theorem 7 that

$$
d_{r k}(D) \leq \frac{k n}{\gamma_{r k}(D)}=\frac{k n}{n}=k
$$

and therefore $d_{r k}(D)=k$.
Theorem 12. For every digraph D,

$$
d_{r k}(D) \leq \delta^{-}(D)+k
$$

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a kRD family on D such that $d=d_{r k}(D)$, and let v be a vertex of minimum indegree $\delta^{-}(D)$. Since $\sum_{u \in N^{-}[v]}\left|f_{i}(u)\right| \geq 1$ for all $i \in\{1,2, \ldots, d\}$ and $\sum_{u \in N^{-}[v]}\left|f_{i}(u)\right|<k$ for at most k indices $i \in\{1,2, \ldots, d\}$, we obtain

$$
\begin{aligned}
k d-k(k-1) & \leq \sum_{i=1}^{d} \sum_{u \in N^{-}[v]}\left|f_{i}(u)\right| \\
& =\sum_{u \in N^{-}[v]} \sum_{i=1}^{d}\left|f_{i}(u)\right| \\
& \leq \sum_{u \in N^{-}[v]} k=k\left(\delta^{-}(D)+1\right)
\end{aligned}
$$

and this leads to the desired bound.

The special case $k=1$ of Theorem 12 can be found in [20].
To prove sharpness of Theorem 12, let $p \geq 2$ be an integer, and let D_{i} be a copy of the complete digraph K_{p+k+1}^{*} with vertex set $V\left(D_{i}\right)=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{p+k+1}^{i}\right\}$ for $1 \leq i \leq p$. Now let D be the digraph obtained from $\bigcup_{i=1}^{p} D_{i}$ by adding a new vertex v and joining v to each v_{1}^{i} by the $\operatorname{arcs} v v_{1}^{i}$ and $v_{1}^{i} v$. Define the k-rainbow dominating functions $f_{1}, f_{2}, \ldots, f_{p+k}$ as follows: for $1 \leq i \leq p$ and $1 \leq s \leq k$
$f_{i}\left(v_{1}^{i}\right)=\{1, \ldots, k\}, f_{i}\left(v_{i+1}^{j}\right)=\{1, \ldots, k\}$ if $j \in\{1, \ldots, p\} \backslash\{i\}$ and $f(x)=\emptyset$ otherwise, $f_{p+s}(v)=\{1\}, f_{p+s}\left(v_{p+s+1}^{j}\right)=\{1, \ldots, k\}$ if $j \in\{1, \ldots, p\}$ and $f(x)=\emptyset$ otherwise.
It is easy to see that f_{i} is a k-rainbow dominating function on D for each i and $\left\{f_{1}, f_{2}, \ldots, f_{p+k}\right\}$ is a k-rainbow dominating family on D. Since $\delta^{-}(D)=p$, we have $d_{r k}(D)=\delta^{-}(G)+k$.

4. Nordhaus-Gaddum Type Results

The complement \bar{D} of a digraph D is the digraph with vertex set $V(D)$ such that for any two distinct vertices u and v the arc $u v$ belongs to \bar{D} if and only if $u v$ does not belong to D. A digraph D is in-regular when $\delta^{-}(D)=\Delta^{-}(D)$ and r-regular when $\delta^{-}(D)=\Delta^{-}(D)=\delta^{+}(D)=\Delta^{+}(D)=r$. As an application of (1.1) and Theorem 12, we will prove our first Nordhaus-Gaddum type inequality.

Theorem 13. For every digraph D of order n,

$$
2 k \leq d_{r k}(D)+d_{r k}(\bar{D}) \leq n+2 k-1
$$

If $d_{r k}(D)+d_{r k}(\bar{D})=n+2 k-1$, then D is in-regular.
Proof. Using (1.1), the inequality $2 k \leq d_{r k}(D)+d_{r k}(\bar{D})$ is immediate.
Since $\delta^{-}(\bar{D})=n-1-\Delta^{-}(D)$, it follows from Theorem 12 that

$$
\begin{aligned}
d_{r k}(D)+d_{r k}(\bar{D}) & \leq\left(\delta^{-}(D)+k\right)+\left(\delta^{-}(\bar{D})+k\right) \\
& =\left(\delta^{-}(D)+k\right)+\left(n-\Delta^{-}(D)-1+k\right) \\
& \leq n+2 k-1
\end{aligned}
$$

and this is the second bound. In addition, if D is not in-regular, then $\Delta^{-}(D)-$ $\delta^{-}(D) \geq 1$, and the inequality chain above leads to the better bound $d_{r k}(D)+$ $d_{r k}(\bar{D}) \leq n+2 k-2$. This completes the proof.

Corollary 9 implies that $d_{r 1}\left(K_{n}^{*}\right)=n$ and hence $d_{r k}\left(K_{n}^{*}\right)+d_{r k}\left(\overline{K_{n}^{*}}\right)=n+1$. Consequently, the upper bound in Theorem 13 is sharp for $k=1$. The next result gives an upper bound for the k-rainbow domatic number of some special regular digraphs.

Theorem 14. Let D be an r-regular digraph of order n. If D has a $\gamma_{r k}(D)$-function f such that $V_{2} \cup V_{3} \cup \cdots \cup V_{k} \neq \emptyset$ or $V_{2}=V_{3}=\cdots=V_{k}=\emptyset$ and $k\left|V_{0}\right|<r\left|V_{1}\right|$, where $V_{i}=\{v \in V(D):|f(v)|=i\}$, then

$$
d_{r k}(D) \leq r+k-1
$$

Proof. Let f be a $\gamma_{r k}(D)$-function, and let $V_{i}=\{v:|f(v)|=i\}$ for $i=0,1, \ldots, k$. Then $\gamma_{r k}(D)=\left|V_{1}\right|+2\left|V_{2}\right|+\cdots+k\left|V_{k}\right|$ and $n=\left|V_{0}\right|+\left|V_{1}\right|+\cdots+\left|V_{k}\right|$. Following the proof of Theorem 6 , we obtain

$$
\begin{equation*}
(r+k) \gamma_{r k}(D) \geq k n+k\left(\left|V_{2}\right|+2\left|V_{3}\right|+\cdots+(k-1)\left|V_{k}\right|\right) \geq k n \tag{4.1}
\end{equation*}
$$

Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a kRD family of D such that $d=d_{r k}(D)$. We observe that

$$
\begin{equation*}
\sum_{i=1}^{d} \omega\left(f_{i}\right)=\sum_{i=1}^{d} \sum_{v \in V(D)}\left|f_{i}(v)\right|=\sum_{v \in V(D)} \sum_{i=1}^{d}\left|f_{i}(v)\right| \leq \sum_{v \in V(D)} k=k n \tag{4.2}
\end{equation*}
$$

Suppose to the contrary that $d \geq r+k$. If $V_{2} \cup V_{3} \cup \cdots \cup V_{k} \neq \emptyset$, then (4.1) shows that $\gamma_{r k}(D) \geq(k n+k) /(r+k)$. It follows that

$$
\sum_{i=1}^{d} \omega\left(f_{i}\right) \geq \sum_{i=1}^{d} \gamma_{r k}(D) \geq d\left\lceil\frac{k n+k}{r+k}\right\rceil \geq(r+k)\left(\frac{k n+k}{r+k}\right)=k n+k>k n
$$

a contradiction to (4.2). If $V_{2}=V_{3}=\cdots=V_{k}=\emptyset$ and $k\left|V_{0}\right|<r\left|V_{1}\right|$, then $\gamma_{r k}(D)=\left|V_{1}\right|$ and $n=\left|V_{0}\right|+\left|V_{1}\right|$ and thus

$$
(r+k) \gamma_{r k}(D)=k\left|V_{1}\right|+r\left|V_{1}\right|>k\left|V_{1}\right|+k\left|V_{0}\right|=k n
$$

This implies that $\gamma_{r k}(G)>k n /(r+k)$, and we obtain the following contradiction to (4.2)

$$
\sum_{i=1}^{d} \omega\left(f_{i}\right) \geq \sum_{i=1}^{d} \gamma_{r k}(D)>(r+k)\left(\frac{k n}{r+k}\right)=k n
$$

Therefore $d \leq r+k-1$, and the proof is complete.

Now we improve the upper bound given in Theorem 13 for regular digraphs and $k \geq 2$.

Theorem 15. If $k \geq 2$ is an integer, and D is an r-regular digraph of order n, then

$$
d_{r k}(D)+d_{r k}(\bar{D}) \leq n+2 k-2
$$

Proof. Since D is r-regular, we observe that \bar{D} is $(n-r-1)$-regular. Assume that D has a $\gamma_{r k}(D)$-function f such that $V_{2} \cup V_{3} \cup \cdots \cup V_{k} \neq \emptyset$ or $V_{2}=V_{3}=\cdots=V_{k}=\emptyset$ and $k\left|V_{0}\right|<r\left|V_{1}\right|$, where $V_{i}=\{v \in V(D):|f(v)|=i\}$. Then we deduce from Theorem 14 that $d_{r k}(D) \leq r+k-1$. Using Theorem 12, we obtain the desired result as follows

$$
d_{r k}(D)+d_{r k}(\bar{D}) \leq(r+k-1)+(n-r-1+k)=n+2 k-2
$$

It remains the case that every $\gamma_{r k}(D)$-function f of D fulfills $V_{2}=V_{3}=\cdots=$ $V_{k}=\emptyset$ and $k\left|V_{0}\right|=r\left|V_{1}\right|$, where $V_{i}=\{v \in V(D):|f(v)|=i\}$. Note that $n=$ $\left|V_{0}\right|+\left|V_{1}\right|$. Furthermore, $\left|V_{0}\right| \geq 1$ and thus $\left|V_{1}\right| \geq k$. Since \bar{D} is $(n-r-1)$-regular, it follows that $r \geq(n-1) / 2$ or $n-r-1 \geq(n-1) / 2$. We assume, without loss of generality, that $r \geq(n-1) / 2$.

If $\left|V_{1}\right| \geq 2 k$, then $k\left|V_{0}\right|=r\left|V_{1}\right| \geq 2 k r$ and thus $\left|V_{0}\right| \geq 2 r$. This leads to the contradiction

$$
n=\left|V_{0}\right|+\left|V_{1}\right| \geq 2 r+2 k \geq n-1+2 k .
$$

In the case $k+1 \leq\left|V_{1}\right| \leq 2 k-1$, we define $V_{1}^{i}=\{v: f(v)=\{i\}\}$ for $i \in$ $\{1,2, \ldots, k\}$. Because of $\left|V_{1}\right| \leq 2 k-1$, we observe that $\left|V_{1}^{i}\right|=1$ for at least one index $i \in\{1,2, \ldots, k\}$. We assume, without loss of generality, that $\left|V_{1}^{1}\right|=1$. Since each vertex of V_{0} has an in-neighbor in V_{1}^{1}, we deduce that $\left|V_{0}\right| \leq r$. This implies that

$$
k\left|V_{0}\right| \leq k r<r\left|V_{1}\right|,
$$

a contradiction to the assumption $k\left|V_{0}\right|=r\left|V_{1}\right|$.
If $\left|V_{1}\right|=k$, then $\left|V_{0}\right|=r$ and so $n=r+k$. Hence $n-r-1=k-1$. Since the k vertices of V_{1} induce a complete digraph of order k in \bar{D}, we deduce from Corollary 9 that $d_{r k}(\bar{D}) \leq k$. Now Theorem 12 implies that

$$
d_{r k}(D)+d_{r k}(\bar{D}) \leq(r+k)+k=n+k \leq n+2 k-2
$$

Since we have discussed all possible cases, the proof is complete.

The complete digraph K_{n}^{*} demonstrates that Theorem 15 does not hold for $k=1$. However, we propose the following conjecture.

Conjecture. If $k \geq 2$ is an integer, and D is a digraph of order n, then

$$
d_{r k}(D)+d_{r k}(\bar{D}) \leq n+2 k-2 .
$$

Corollary 16. If $k \geq 1$ is an integer, and D is a digraph of order n, then

$$
d_{r k}(D) \cdot d_{r k}(\bar{D}) \leq \frac{(n+2 k-1)^{2}}{4}
$$

Proof. It follows from Theorem 13 that

$$
\begin{aligned}
(n+2 k-1)^{2} & \geq\left(d_{r k}(D)+d_{r k}(\bar{D})\right)^{2} \\
& =\left(d_{r k}(D)-d_{r k}(\bar{D})\right)^{2}+4 d_{r k}(D) \cdot d_{r k}(\bar{D}) \\
& \geq 4 d_{r k}(D) \cdot d_{r k}(\bar{D})
\end{aligned}
$$

and this leads to the desired bound.

5. Cartesian Product and Strong Product of Directed Cycles

Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be two digraphs which have disjoint vertex sets V_{1} and V_{2} and disjoint arc sets A_{1} and A_{2}, respectively. The Cartesian product $D_{1} \square D_{2}$ is the digraph with vertex set $V_{1} \times V_{2}$ and for any two vertices $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ of $D_{1} \square D_{2},\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \in A\left(D_{1} \square D_{2}\right)$ if one of the following holds:
(a) $x_{1}=y_{1}$ and $x_{2} y_{2} \in A\left(D_{2}\right)$;
(b) $x_{1} y_{1} \in A\left(D_{1}\right)$ and $x_{2}=y_{2}$.

The strong product $D_{1} \otimes D_{2}$ is the digraph obtained from $D_{1} \square D_{2}$ by adding the following arcs:
(c) $x_{1} y_{1} \in A\left(D_{1}\right)$ and $x_{2} y_{2} \in A\left(D_{2}\right)$.

The proof of the following results can be found in [1].
Proposition C. If $m=2 r$ and $n=2 s$ for some positive integers r, s, then

$$
\gamma_{r 2}\left(C_{m} \square C_{n}\right)=\gamma_{r 2}\left(C_{m} \otimes C_{n}\right)=\frac{m n}{2} .
$$

Proposition D. For $n \geq 2, \gamma_{r 2}\left(C_{3} \square C_{n}\right)=2 n$.
Proposition E. If n is odd, then $\gamma_{r 2}\left(C_{2} \square C_{n}\right)=n+1$.
Proposition F. If $m=4 r$ and $n=2 s+1$ for some positive integers r, s, then $\gamma_{r 2}\left(C_{m} \otimes C_{n}\right)=\frac{m n}{2}$.

Proposition 17. If m and n are even positive integers, then $d_{r 2}\left(C_{m} \square C_{n}\right)=4$.
Proof. Let $m=2 r$ and $n=2 s$ for some positive integers r, s. It follows from Theorem 7 and Proposition C that $d_{r 2}\left(C_{m} \square C_{n}\right) \leq 4$ and $d_{r 2}\left(C_{m} \otimes C_{n}\right) \leq 4$. Define $f_{1}, f_{2}, g_{1}, g_{2}: V(D) \rightarrow \mathcal{P}(\{1,2\})$ by:
$f_{1}((2 i-1,2 j-1))=\{1\}$, for each $1 \leq i \leq r$ and $1 \leq j \leq s, f_{1}((2 i, 2 j))=$ $\{2\}$ for each $1 \leq i \leq r$ and $1 \leq j \leq s$ and $f_{1}(x)=\emptyset$ otherwise,
$f_{2}((2 i-1,2 j-1))=\{2\}$, for each $1 \leq i \leq r$ and $1 \leq j \leq s, f_{2}((2 i, 2 j))=$ $\{1\}$ for each $1 \leq i \leq r$ and $1 \leq j \leq s$ and $f_{2}(x)=\emptyset$ otherwise,
$g_{1}((2 i, 2 j-1))=\{1\}$, for each $1 \leq i \leq r$ and $1 \leq j \leq s, g_{1}((2 i-1,2 j))=$ $\{2\}$ for each $1 \leq i \leq r$ and $1 \leq j \leq s$ and $g_{1}(x)=\emptyset$ otherwise,
$g_{2}((2 i, 2 j-1))=\{2\}$, for each $1 \leq i \leq r$ and $1 \leq j \leq s, g_{2}((2 i-1,2 j))=$ $\{1\}$ for each $1 \leq i \leq r$ and $1 \leq j \leq s$ and $g_{2}(x)=\emptyset$ otherwise.

It is easy to see that $\left\{f_{1}, f_{2}, g_{1}, g_{2}\right\}$ is a 2 RD family of $C_{m} \square C_{n}$ and $C_{m} \otimes C_{n}$, and so $d_{r 2}\left(C_{m} \square C_{n}\right)=d_{r 2}\left(C_{m} \otimes C_{n}\right)=4$.
Proposition 18. For $n \geq 2, d_{r 2}\left(C_{3} \square C_{n}\right)=3$.
Proof. By Theorem 7 and Proposition D, we have $d_{r 2}\left(C_{3} \square C_{n}\right) \leq 3$.
If $n \equiv 0(\bmod 3)$, then define $g_{1}, g_{2}, g_{3}: V\left(C_{3} \square C_{n}\right) \rightarrow \mathcal{P}(\{1,2\})$ as follows:
$g_{1}((1,3 i+1))=g_{1}((2,3 i+2))=g_{1}((3,3 i+3))=\{1\}, g_{1}((1,3 i+3))=g_{2}((2,3 i+$
$1))=g_{1}((3,3 i+2))=\{2\}$ for $0 \leq i \leq \frac{n}{3}-1$ and $g_{1}(x)=\emptyset$ otherwise,
$g_{2}((1,3 i+2))=g_{2}((2,3 i+3))=g_{2}((3,3 i+1))=\{1\}, g_{2}((1,3 i+1))=g_{2}((2,3 i+$
$2))=g_{2}((3,3 i+3))=\{2\}$ for $0 \leq i \leq \frac{n}{3}-1$ and $g_{2}(x)=\emptyset$ otherwise,
$g_{3}((1,3 i+3))=g_{3}((2,3 i+1))=g_{3}((3,3 i+2))=\{1\}, g_{3}((1,3 i+2))=$ $g_{3}((2,3 i+3))=g_{3}((3,3 i+1))=\{2\}$ for $0 \leq i \leq \frac{n}{3}-1$ and $g_{3}(x)=\emptyset$ otherwise.

If $n \equiv 1(\bmod 3)$, then define $g_{1}, g_{2}, g_{3}: V\left(C_{3} \square C_{n}\right) \rightarrow \mathcal{P}(\{1,2\})$ as follows:

$$
g_{1}((3, n))=\{1\}, g_{1}((2, n))=\{2\}, g_{1}((1,3 i+1))=g_{1}((2,3 i+2))=g_{1}((3,3 i+
$$ $3))=\{1\}, g_{1}((1,3 i+3))=g_{1}((2,3 i+1))=g_{1}((3,3 i+2))=\{2\}$ for $0 \leq i \leq \frac{n-1}{3}-1$ and $g_{1}(x)=\emptyset$ otherwise,

$g_{2}((1, n))=\{1\}, g_{2}((3, n))=\{2\}, g_{2}((2,3 i+1))=g_{2}((3,3 i+2))=g_{2}((1,3 i+$ $3))=\{1\}, g_{2}((2,3 i+3))=g_{2}((3,3 i+1))=g_{2}((1,3 i+2))=\{2\}$ for $0 \leq i \leq \frac{n-1}{3}-1$ and $g_{2}(x)=\emptyset$ otherwise,
$g_{3}((2, n))=\{1\}, g_{3}((1, n))=\{2\}, g_{3}((3,3 i+1))=g_{3}((1,3 i+2))=g_{3}((2,3 i+$ $3))=\{1\}, g_{3}((3,3 i+3))=g_{3}((1,3 i+1))=g_{3}((2,3 i+2))=\{2\}$ for $0 \leq i \leq \frac{n-1}{3}-1$ and $g_{3}(x)=\emptyset$ otherwise.

If $n \equiv 2(\bmod 3)$, then define $g_{1}, g_{2}, g_{3}: V\left(C_{3} \square C_{n}\right) \rightarrow \mathcal{P}(\{1,2\})$ as follows:
$g_{1}((1, n))=g_{1}((1, n-1))=g_{1}((3, n))=\{1\}, g_{1}((2, n-1))=\{2\}, g_{1}((1,3 i+$ $1))=g_{1}((2,3 i+2))=g_{1}((3,3 i+3))=\{1\}, g_{1}((1,3 i+3))=g_{1}((2,3 i+1))=$ $g_{1}((3,3 i+2))=\{2\}$ for $0 \leq i \leq \frac{n-2}{3}-1$ and $g_{1}(x)=\emptyset$ otherwise,
$g_{2}((2, n))=g_{2}((2, n-1))=g_{2}((1, n))=\{1\}, g_{2}((3, n-1))=\{2\}, g_{2}((2,3 i+$ $1))=g_{2}((3,3 i+2))=g_{2}((1,3 i+3))=\{1\}, g_{2}((2,3 i+3))=g_{2}((3,3 i+1))=$ $g_{2}((1,3 i+2))=\{2\}$ for $0 \leq i \leq \frac{n-2}{3}-1$ and $g_{2}(x)=\emptyset$ otherwise,
$g_{3}((3, n))=g_{3}((3, n-1))=g_{3}((2, n))=\{1\}, g_{3}((1, n-1))=\{2\}, g_{3}((3,3 i+$ $1))=g_{3}((1,3 i+2))=g_{3}((2,3 i+3))=\{1\}, g_{3}((3,3 i+3))=g_{3}((1,3 i+1))=$ $g_{3}((2,3 i+2))=\{2\}$ for $0 \leq i \leq \frac{n-2}{3}-1$ and $g_{3}(x)=\emptyset$ otherwise.

It is easy to see that $\left\{g_{1}, g_{2}, g_{3}\right\}$ is a 2 RDF family of $C_{3} \square C_{n}$ and so $d_{r 2}\left(C_{3} \square C_{n}\right) \geq 3$. Thus $d_{r 2}\left(C_{3} \square C_{n}\right)=3$.

Proposition 19. If n is odd, then $2 \leq d_{r 2}\left(C_{2} \square C_{n}\right) \leq 3$.
Proof. By Theorem 7 and Proposition E, we have $d_{r 2}\left(C_{2} \square C_{n}\right) \leq 3$. To prove lower bound, define $g_{1}, g_{2}: V\left(C_{2} \square C_{n}\right) \rightarrow \mathcal{P}(\{1,2\})$ by
$g_{1}((1,1))=\{1\}, g_{1}((1,2 i))=\{1\}$ for $1 \leq i \leq \frac{n-1}{2}$ and $g_{1}((2,2 i-1))=\{2\}$ for $1 \leq i \leq \frac{n+1}{2}$ and $g_{1}(x)=\emptyset$ otherwise, and
$g_{2}((1,1))=\{2\}, g_{2}((1,2 i))=\{2\}$ for $1 \leq i \leq \frac{n-1}{2}$ and $g_{2}((2,2 i-1))=\{1\}$ for $1 \leq i \leq \frac{n+1}{2}$ and $g_{2}(x)=\emptyset$ otherwise.

Clearly $\left\{g_{1}, g_{2}\right\}$ is a 2RDF family of $C_{2} \square C_{n}$ and so $d_{r 2}\left(C_{2} \square C_{n}\right) \geq 2$.
Proposition 20. If $m=4 r$ and $n=2 s+1$ for some positive integers r, s, then $d_{r 2}\left(C_{m} \otimes C_{n}\right)=4$.

Proof. By Theorem 7, we have $d_{r 2}\left(C_{m} \otimes C_{n}\right) \leq 4$. Define $g_{1}, g_{2}, g_{3}, g_{4}: V\left(C_{m} \otimes\right.$ $\left.C_{n}\right) \rightarrow \mathcal{P}(\{1,2\})$ as follows:
$g_{1}((4 i+1,1))=\{1\}, g_{1}((4 i+3,1))=\{2\}$ for $0 \leq i \leq r-1, g_{1}((4 i+2,2 j))=$ $g_{1}((4 i+4,2 j+1))=\{1\}, g_{1}((4 i+4,2 j))=g_{1}((4 i+2,2 j+1))=\{2\}$ for $0 \leq i \leq$ $r-1$ and $1 \leq j \leq s$, and $g_{1}(x)=\emptyset$ otherwise,
$g_{2}((4 i+1,1))=\{2\}, g_{2}((4 i+3,1))=\{1\}$ for $0 \leq i \leq r-1, g_{2}((4 i+2,2 j))=$ $g_{2}((4 i+4,2 j+1))=\{2\}, g_{2}((4 i+4,2 j))=g_{2}((4 i+2,2 j+1))=\{1\}$ for $0 \leq i \leq$ $r-1$ and $1 \leq j \leq s$, and $g_{2}(x)=\emptyset$ otherwise,
$g_{3}((4 i+2,1))=\{1\}, g_{3}((4 i+4,1))=\{2\}$ for $0 \leq i \leq r-1, g_{3}((4 i+3,2 j))=$ $g_{3}((4 i+1,2 j+1))=\{1\}, g_{3}((4 i+1,2 j))=g_{3}((4 i+3,2 j+1))=\{2\}$ for $0 \leq i \leq$ $r-1$ and $1 \leq j \leq s$, and $g_{3}(x)=\emptyset$ otherwise,
$g_{4}((4 i+2,1))=\{2\}, g_{4}((4 i+4,1))=\{1\}$ for $0 \leq i \leq r-1, g_{4}((4 i+3,2 j))=$ $g_{4}((4 i+1,2 j+1))=\{2\}, g_{4}((4 i+1,2 j))=g_{4}((4 i+3,2 j+1))=\{1\}$ for $0 \leq i \leq$ $r-1$ and $1 \leq j \leq s$, and $g_{4}(x)=\emptyset$ otherwise.

It is easy to see that $\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$ is a 2 RDF family of $C_{m} \otimes C_{n}$ and so $d_{r 2}\left(C_{m} \otimes\right.$ $\left.C_{n}\right) \geq 4$. Thus $d_{r 2}\left(C_{m} \otimes C_{n}\right)=4$.

We conclude this paper with a problem.
Problem. Determine the exact value of $d_{r 2}\left(C_{m} \square C_{n}\right)$ and $d_{r 2}\left(C_{m} \otimes C_{n}\right)$ for all m and n.

References

[1] J. Amjadi, A. Bahremandpour, S. M. Sheikholeslami and L. Volkmann, The rainbow domination number of a digraph, Kragujevac J. Math., 37(2013), 257-268.
[2] J. Amjadi, N. Mohammadi, S. M. Sheikholeslami and L. Volkmann, The k-rainbow bondage number of a digraph, Discuss. Math. Graph Theory, 35(2015), 261-270.
[3] B. Brešar, M. A. Henning and D. F. Rall, Rainbow domination in graphs, Taiwanese J. Math., 12(2008), 213-225.
[4] B. Brešar and T. K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math., 155(2007), 2394-2400.
[5] G. J. Chang, J. Wu and X. Zhu, Rainbow domination on trees, Discrete Appl. Math., 158(2010), 8-12.
[6] G. Chartrand, F. Harary and B. Q. Yue, On the out-domination and in-domination numbers of a digraph, Discrete Math., 197,198(1999), 179-183.
[7] T. Chunling, L. Xiaohui, Y. Yuansheng and L. Meiqin, 2-rainbow domination of generalized Petersen graphs P(n,2), Discrete Appl. Math., 157(2009), 1932-1937.
[8] N. Dehgardi, S. M. Sheikholeslami and L. Volkmann, The rainbow domination subdivision numbers of graphs, Mat. Vesnik Mat. Vesnik, $\mathbf{6 7}$ (2015), 102-114.
[9] M. Falahat, S. M. Sheikholeslami and L. Volkmann, New bounds on the rainbow domination subdivision number, Filomat, 28(2014), 615-622.
[10] S. Fujita, M. Furuya and C. Magnant, k-Rainbow domatic numbers, Discrete. Appl. Math., 160(2012), 1104-1113.
[11] J. Ghoshal, R. Laskar and D. Pillone, Topics on domination in directed graphs, in [13], 401-437.
[12] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[13] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs, Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[14] C. Lee, On the domination number of a digraph, PhD thesis, Department of Mathematics, Michigan State University, 1994.
[15] C. Lee, Domination in digraphs, J. Korean Math. Soc., 35(1998), 843-853.
[16] D. Meierling, S. M. Sheikholeslami and L. Volkmann, Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph, Applied Math. Letters, 24(2011), 17581761.
[17] S. M. Sheikholeslami and L. Volkmann, The k-rainbow domatic number of a graph, Discuss. Math. Graph Theory, 32(2012), 129-140.
[18] G. Xu, 2-rainbow domination of generalized Petersen graphs $P(n, 3)$, Discrete Appl. Math., 157(2009), 2570-2573.
[19] X. D. Zhang, J. Liu, X. Chen and J. Meng, On domination number of Cartesian product of directed cycles, Inform. Process. Lett., 111(2010), 36-39.
[20] B. Zelinka, Semidomatic numbers of directed graphs, Math. Slovaca, 34(1984), 371374.

