• Title/Summary/Keyword: Domain engineering

Search Result 6,570, Processing Time 0.04 seconds

파수영역 이산 웨이블릿 변환을 이용한 효율적인 그린함수 표현에 관한 연구 (An Application of k-domain Discrete Wavelet Transform for the Efficient Representation of Green Function)

  • 주세훈;김형동
    • 한국전자파학회논문지
    • /
    • 제12권7호
    • /
    • pp.1110-1114
    • /
    • 2001
  • 그린함수의 효율적인 표현을 위하여 파수영역 웨이블릿 변환 개념을 이용하였다. 파수영역 웨이블릿 변환을 공간영역에서 가변 윈도우를 사용하여 등가적으로 구현하였다. 제안된 방법은 공간영역 그린함수에 대하여 윈도우 함수를 이용한 필터링과정, 고유함수의 전개를 통한 중심이동과정, 그리고 푸리에 변환과정으로 이루어진다. 파수영역 이산 웨이블릿 변환이 적용된 그린함수의 수식을 유도하였고, 근거리 그린함수와 원거리 그린함수를 표현하여 파수영역에서 비교하여 특성에 대하여 논의하였다.

  • PDF

Performance of Iterative Soft Decision Feedback Equalizers for Single-Carrier Transmission

  • Jeon, Taehyun;Yoon, Seokhyun;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1280-1285
    • /
    • 2017
  • In this paper, we consider iterative soft-decision feedback equalizers (sDFE), a.k.a. turbo equalizers for single-carrier transmission. Turbo equalizer takes log-likelihood ratio (LLR) feedback from channel decoder and convert the LLR into symbol estimates and variances to be used for the LLR update at the sDFE. Specifically, we consider both time domain and frequency-domain sDFE and compare their performances. The results shows that frequency-domain sDFE performs better than time-domain one and also that considerable gain can be obtained especially when the channel has deep nulls.

능동 네트워크를 위한 Enode 운영체제 설계 및 구현 (Design and Implementation of the Enode Operating System for the Active Network)

  • 장승주;나중찬;이영석
    • 한국정보통신학회논문지
    • /
    • 제7권8호
    • /
    • pp.1831-1839
    • /
    • 2003
  • 본 논문은 능동 네트워크를 동작하게 해주는 핵심 모듈인 Enode 노드 운영체제 구조 및 세부 기능들의 내용을 정의한다. 본 논문에서 제안하는 Enode 노드 운영체제는 능동 네트워크 환경에 적합하도록 설계하였다. 또한 "실행 환경"(Execution Environment : EE)에서 편리하게 사용할 수 있도록 인터페이스를 설계하였다. 본 논문에서 제안하는 Enode 노드 운영체제는 도메인을 중심으로 핵심적인 기능 설계에 주력하였다. Enode 운영체제는 Linux 운영체제 상에서 설계되었다. 또한 본 논문에서 제안하는 Enode 노드 운영체제의 인터페이스에 대한 실험을 수행하였다.

적응적 영역분할법을 이용한 임의의 점군으로부터의 형상 재구성 (Shape Reconstruction from Unorganized Cloud of Points using Adaptive Domain Decomposition Method)

  • 유동진
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.89-99
    • /
    • 2006
  • In this paper a new shape reconstruction method that allows us to construct surface models from very large sets of points is presented. In this method the global domain of interest is divided into smaller domains where the problem can be solved locally. These local solutions of subdivided domains are blended together according to weighting coefficients to obtain a global solution using partition of unity function. The suggested approach gives us considerable flexibility in the choice of local shape functions which depend on the local shape complexity and desired accuracy. At each domain, a quadratic polynomial function is created that fits the points in the domain. If the approximation is not accurate enough, other higher order functions including cubic polynomial function and RBF(Radial Basis Function) are used. This adaptive selection of local shape functions offers robust and efficient solution to a great variety of shape reconstruction problems.

Building Domain Ontology Based on Linguistic Patterns

  • Kim, Kweon-Yang;Lim, Soo-Yeon
    • 한국지능시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.766-771
    • /
    • 2006
  • In this paper, we focus on the building domain ontology from corpus by extracting concepts and properties relationships based on linguistic patterns. The pharmacy field is selected as an experiment domain and we present an algorithm to extract hierarchical structure for terminology based on the noun/suffix patterns of terminology in domain texts. In order to show usefulness of our domain ontology, we compare a typical keyword based retrieval method with an ontology based retrieval mettled which uses related information in an ontology for a related feedback. As a result, our method shows the improvement of precision by 4.97% without losing recall.

품질 지향적 CIM시스템 개발에 관한 연구 (제1부:Freamwork) (A Study on the Development of a Quality-Driven CIM System (part l: Framework))

  • 강무진
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.63-69
    • /
    • 1996
  • As the significance of quality in the sense of customer satisfaction is growing, the management of quality becomes one of the main interests in the manufacturing systems research. This paper presents the concept of quality-driven CIM(Computer Integrated Manufacturing) system which is composed of a business process domain and a quality domain. In the business process domain, business functions are integrated by conventional design and manufacturing databases on the one hand, and an integrated quality system is interlinked to them via several quality modules on the other hand. Quality information model connects the business process domain with the quality domain where various types of quality data are stored in the form of quality database. This framework helps a manufacturing enterprise to implement the quality-driven CIM system to achieve its final objective "customer satisfaction".ion".uot;.

  • PDF

잔여 파동장 분리 기법을 이용한 주파수영역 파형역산 (Frequency-domain Waveform Inversion using Residual-selection Strategy)

  • 손우현;편석준;곽상민
    • 지구물리와물리탐사
    • /
    • 제14권3호
    • /
    • pp.214-219
    • /
    • 2011
  • 본 논문에서는 시간영역에서 분리된 잔여 파동장을 이용하여 주파수영역 파형역산을 수행하였다. 시간영역 잔여 파동장들을 절대값의 크기에 따라 정렬하여 분류하고, 이를 여러 개의 그룹으로 분리하였다. 분리된 잔여 파동장들은 각 그룹별로 목적함수의 경사 방향을 정규화한 후 평균하기 때문에 통상적인 잔여 파동장에서 작은 크기를 가지는 파동장들을 상대적으로 강조하는 효과가 있고, 이는 파형역산 시 심부구조의 이미지 향상에 도움을 준다. 파형역산은 시간영역에서 분리된 잔여 파동장을 이용하여 주파수영역에서 수행되며, 목적함수의 경사방향은 구조보정에서 많이 쓰이는 역전파 기법을 적용하여 계산된다. 본 연구에서 제안한 알고리듬의 타당성을 확인하기 위하여 SEG/EAGE 암염 모델과 Marmousi 모델을 이용하여 파형역산을 수행하였다. 역산 결과를 통해 제안된 알고리즘이 일반적인 주파수영역 파형역산에 비해 심부구조에 대하여 향상된 결과를 제시함을 확인하였다.

단일 훈련 샘플만을 활용하는 준-지도학습 심층 도메인 적응 기반 얼굴인식 기술 개발 (Development of Semi-Supervised Deep Domain Adaptation Based Face Recognition Using Only a Single Training Sample)

  • 김경태;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제25권10호
    • /
    • pp.1375-1385
    • /
    • 2022
  • In this paper, we propose a semi-supervised domain adaptation solution to deal with practical face recognition (FR) scenarios where a single face image for each target identity (to be recognized) is only available in the training phase. Main goal of the proposed method is to reduce the discrepancy between the target and the source domain face images, which ultimately improves FR performances. The proposed method is based on the Domain Adatation network (DAN) using an MMD loss function to reduce the discrepancy between domains. In order to train more effectively, we develop a novel loss function learning strategy in which MMD loss and cross-entropy loss functions are adopted by using different weights according to the progress of each epoch during the learning. The proposed weight adoptation focuses on the training of the source domain in the initial learning phase to learn facial feature information such as eyes, nose, and mouth. After the initial learning is completed, the resulting feature information is used to training a deep network using the target domain images. To evaluate the effectiveness of the proposed method, FR performances were evaluated with pretrained model trained only with CASIA-webface (source images) and fine-tuned model trained only with FERET's gallery (target images) under the same FR scenarios. The experimental results showed that the proposed semi-supervised domain adaptation can be improved by 24.78% compared to the pre-trained model and 28.42% compared to the fine-tuned model. In addition, the proposed method outperformed other state-of-the-arts domain adaptation approaches by 9.41%.

시간-주파수 영역 반사파 시스템에서 가중강인최소자승 필터를 이용한 주파수 추정 (Frequency Estimation for Time-Frequency Domain Reflectometry using Weighted Robust Least Squares Filter)

  • 곽기석;나원상;두승호;최가형;윤태성;박진배;고재원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1640-1641
    • /
    • 2007
  • In this paper, an experiment of weighted robust least squares frequency estimation for the Gaussian envelope chirp signal which is used in the time-frequency domain reflectometry system was carried out. By incorporating the forgetting factor to the frequency estimator, the weighted robust least squares filter achieved good enough frequency estimation performance for the chirp signal and it can be adopted to implement not only low cost time-frequency domain reflectometry but also real-time time-frequency domain reflectometry implementation.

  • PDF

Optimization of Domain-Independent Classification Framework for Mood Classification

  • Choi, Sung-Pil;Jung, Yu-Chul;Myaeng, Sung-Hyon
    • Journal of Information Processing Systems
    • /
    • 제3권2호
    • /
    • pp.73-81
    • /
    • 2007
  • In this paper, we introduce a domain-independent classification framework based on both k-nearest neighbor and Naive Bayesian classification algorithms. The architecture of our system is simple and modularized in that each sub-module of the system could be changed or improved efficiently. Moreover, it provides various feature selection mechanisms to be applied to optimize the general-purpose classifiers for a specific domain. As for the enhanced classification performance, our system provides conditional probability boosting (CPB) mechanism which could be used in various domains. In the mood classification domain, our optimized framework using the CPB algorithm showed 1% of improvement in precision and 2% in recall compared with the baseline.