• Title/Summary/Keyword: Domain decomposition and MPI

Search Result 31, Processing Time 0.026 seconds

A Performance Comparison between Coarray and MPI for Parallel Wave Propagation Modeling and Reverse-time Migration (코어레이와 MPI를 이용한 병렬 파동 전파 모델링과 거꿀 참반사 보정 성능 비교)

  • Ryu, Donghyun;Kim, Ahreum;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.131-135
    • /
    • 2016
  • Coarray is a parallel processing technique introduced in the Fortran 2008 standard. Coarray can implement parallel processing using simple syntax. In this research, we examined applicability of Coarray to seismic parallel processing by comparing performance of seismic data processing programs using Coarray and MPI. We compared calculation time using seismic wave propagation modeling and one to one communication time using domain decomposition technique. We also compared performance of parallel reverse-time migration programs using Coarray and MPI. Test results show that the computing speed of Coarray method is similar to that of MPI. On the other hand, MPI has superior communication speed to that of Coarray.

Parallel finite element simulation of free surface flows using Taylor-Galerkin/level-set method (Taylor-Galerkin/level-set 방법을 이용한 자유 표면의 병렬 유한 요소 해석)

  • Ahn, Young-Kyoo;Choi, Hyoung-Gwon;Cho, Myung-Hwan;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2558-2561
    • /
    • 2008
  • In the present study, a parallel Taylor-Galerkin/level set based two-phase flow code was developed using finite element discretization and domain decomposition method based on MPI (Message Passing Interface). The proposed method can be utilized for the analysis of a large scale free surface problem in a complex geometry due to the feature of FEM and domain decomposition method. Four-step fractional step method was used for the solution of the incompressible Navier-Stokes equations and Taylor-Galerkin method was adopted for the discretization of hyperbolic type redistancing and advection equations. A Parallel ILU(0) type preconditioner was chosen to accelerate the convergence of a conjugate gradient type iterative solvers. From the present parallel numerical experiments, it has been shown that the proposed method is applicable to the simulation of large scale free surface flows.

  • PDF

The Inverse Design Technique of Axial Blade Using the Parallel Calculation (병렬 연산을 이용한 축류 블레이드의 역설계)

  • Cho, J. K.;Ahn, J. S.;Park, W. G.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.200-207
    • /
    • 1999
  • An efficient inverse design technique based on the MGM (Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The solver is parallelized by using the domain decomposition method and the standard MPI library for communications between the processors. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the axial blade. It has been found that they are well converged to their target pressure distribution.

  • PDF

The Mixed Finite Element Analysis for Porous Media using Domain Decomposition Method (영역 분할기법을 이용한 포화 다공질매체의 혼합유한요소해석)

  • Lee, Kyung-Jae;Tak, Moon-Ho;Kang, Yoon-Sik;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The mixed finite element analysis is the most widely used method for saturated porous media. Generally, in this method, direct method and iterative method are proposed to obtain unknown variable, however, the iterative method is recommended because the method provide numerical stability and accuracy under the material properties for solid and fluid are different. In this paper, we introduce staggered method which has strong numerical stability, and FETI(Finite Element Tearing and Interconnecting) which is one of decomposition methods are applied into the method in order to obtain numerical efficiency. In which, Lagrange Multipliers and conjugated gradient method to solve decomposed domain are proposed, and then, the proposed method is verified numerical efficiency by point to point MPI(Message Passing Interface) library.

Research for Efficient Massive File I/O on Parallel Programs (병렬 프로그램에서의 효율적인 대용량 파일 입출력 방식의 비교 연구)

  • Hwang, Gyuhyeon;Kim, Youngtae
    • Journal of Internet Computing and Services
    • /
    • v.18 no.2
    • /
    • pp.53-60
    • /
    • 2017
  • Since processors are handling inputs and outputs independently on distributed memory computers, different file input/output methods are used. In this paper, we implemented and compared various file I/O methods to show their efficiency on distributed memory parallel computers. The implemented I/O systems are as following: (i) parallel I/O using NFS, (ii) sequential I/O on the host processor and domain decomposition, (iii) MPI-IO. For performance analysis, we used a separated file server and multiple processors on one or two computational servers. The results show the file I/O with NFS for inputs and sequential output with domain composition for outputs are best efficient respectively. The MPI-IO result shows unexpectedly the lowest performance.

Parallelization of 3-dimensional Multigrid DADI Method (3차원 다중격자 DADI 방법의 병렬처리)

  • Seong Chun-Ho;Park Su-Hyeong;Gwon Jang-Hyeok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.49-54
    • /
    • 1998
  • 3-dimensional Euler solver is parallelized. The spatial discretization method is the 2nd order TVD scheme and DADI method with multigrid is used as a time integration. In order to parallelize this solver, the domain decomposition method with overlapped grid and message passing techniques are used. The informations on the each inter-processor bound-aries are communicated with MPI library. Finally, the parallel performance repsented by calculating the ONERA M6 wing at transonic flow condition using CRAY T3E and C90.

  • PDF

Parallel Computation of a Flow Field Using FEM and Domain Decomposition Method (영역분할법과 유한요소해석을 이용한 유동장의 병렬계산)

  • Choi Hyounggwon;Kim Beomjun;Kang Sungwoo;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.55-58
    • /
    • 2002
  • Parallel finite element code has been recently developed for the analysis of the incompressible Wavier-Stokes equations using domain decomposition method. Metis and MPI libraries are used for the domain partitioning of an unstructured mesh and the data communication between sub-domains, respectively. For unsteady computation of the incompressible Navier-Stokes equations, 4-step splitting method is combined with P1P1 finite element formulation. Smagorinsky and dynamic model are implemented for the simulation of turbulent flows. For the validation performance-estimation of the developed parallel code, three-dimensional Laplace equation has been solved. It has been found that the speed-up of 40 has been obtained from the present parallel code fir the bench mark problem. Lastly, the turbulent flows around the MIRA model and Tiburon model have been solved using 32 processors on IBM SMP cluster and unstructured mesh. The computed drag coefficient agrees better with the existing experiment as the mesh resolution of the region increases, where the variation of pressure is severe.

  • PDF

Three-dimensional Detonation Cell Structures in a Circular Tube

  • Cho, D.R.;Won, S.H.;Shin, Edward J.R.;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.597-601
    • /
    • 2008
  • Three-dimensional structures of detonation wave propagating in circular tube were investigated. Inviscid fluid dynamics equations coupled with a conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Variable-$\gamma$ formulation was used to account for the variable properties between unburned and burned states and the chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The computational code was parallelized based on domain decomposition technique using MPI-II message passing library. The computations were carried out using a home made Windows based PC cluster having 160 AMD AthloxXP and Athlon64 processor. The computational domain consisted of through a roundshaped tube with wall conditions. As an initial condition, analytical ZND solution was distributed over the computational domain with disturbances. The disturbances has circumferential large gradient. The unsteady computational results in three-dimension show the detailed mechanisms of multi-cell mode of detonation wave instabilities resulting diamond shape in smoked-foil record.

  • PDF

Parallel Finite Element Analysis of the Drag of a Car under Road Condition

  • Choi H. G.;Kim B. J.;Kim S. W.;Yoo J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.84-85
    • /
    • 2003
  • A parallelized FEM code based on domain decomposition method has been recently developed for a large scale computational fluid dynamics. A 4-step splitting finite element algorithm is adopted for unsteady computation of the incompressible Navier-Stokes equation, and Smagorinsky LES(Large Eddy Simulation) model is chosen for turbulent flow computation. Both METIS and MPI library are used for domain partitioning and data communication between processors respectively. Tiburon of Hyundai-motor is chosen as the computational model at $Re=7.5{\times}10^{5}$, which is based on the car height. It is confirmed that the drag under road condition is smaller than that of wind tunnel condition.

  • PDF

PARALLEL COMPUTATIONAL APPROACH FOR THREE-DIMENSIONAL SOLID ELEMENT USING EXTRA SHAPE FUNCTION BASED ON DOMAIN DECOMPOSITION APPROACH

  • JOO, HYUNSHIG;GONG, DUHYUN;KANG, SEUNG-HOON;CHUN, TAEYOUNG;SHIN, SANG-JOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.199-214
    • /
    • 2020
  • This paper describes the development of a parallel computational algorithm based on the finite element tearing and interconnecting (FETI) method that uses a local Lagrange multiplier. In this approach, structural computational domain is decomposed into non-overlapping sub-domains using local Lagrange multiplier. The local Lagrange multipliers are imposed at interconnecting nodes. 8-node solid element using extra shape function is adopted by using the representative volume element (RVE). The parallel computational algorithm is further established based on message passing interface (MPI). Finally, the present FETI-local approach is implemented on parallel hardware and shows improved performance.