• Title/Summary/Keyword: Domain Mode

Search Result 744, Processing Time 0.024 seconds

Design modification and structural behavior study of a CFRP star sensor baffle

  • Vinyas, M.;Vishwas, M.;Venkatesha, C.S.;Rao, G. Srinivasa
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.427-445
    • /
    • 2016
  • Star sensors are the attitude estimation sensors of the satellite orbiting in its path. It gives information to the control station on the earth about where the satellite is heading towards. It captures the images of a predetermined reference star. By comparing this image with that of the one captured from the earth, exact position of the satellite is determined. In the process of imaging, stray lights are eliminated from reaching the optic lens by the mechanical enclosures of the star sensors called Baffles. Research in space domain in the last few years is mainly focused on increased payload capacity and reduction in launch cost. In this paper, a star sensor baffle made of Aluminium is considered for the study. In order to minimize the component weight, material wastage and to improve the structural performance, an alternate material to Aluminium is investigated. Carbon Fiber Reinforced Polymer is found to be a better substitute in this regard. Design optimisation studies are carried out by adopting suitable design modifications like implementing an additional L-shaped flange, Upward flange projections, downward flange projections etc. A better configuration of the baffle, satisfying the design requirements and achieving manufacturing feasibility is attained. Geometrical modeling of the baffle is done by using UNIGRAPHICS-Nx7.5(R). Structural behavior of the baffle is analysed by FE analysis such as normal mode analysis, linear static analysis, and linear buckling analysis using MSC/PATRAN(R), MSC-NASTRAN(R) as the solver to validate the stiffness, strength and stability requirements respectively. Effect of the layup sequence and the fiber orientation angle of the composite layup on the stiffness are also studied.

Field Measurement and Modal Identification of Various Structures for Structural Health Monitoring

  • Yoshida, Akihiko;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.9-25
    • /
    • 2015
  • Field measurements of various structures have been conducted for many purposes. Measurement data obtained by field measurement is very useful to determine vibration characteristics including dynamic characteristics such as the damping ratio, natural frequency, and mode shape of a structure. In addition, results of field measurements and modal identification can be used for modal updating of FEM analysis, for checking the efficiency of damping devices and so on. This paper shows some examples of field measurements and modal identification for structural health monitoring. As the first example, changes of dynamic characteristics of a 15-story office building in four construction stages from the foundation stage to completion are described. The dynamic characteristics of each construction stage were modeled as accurately as possible by FEM, and the stiffness of the main structural frame was evaluated and the FEM results were compared with measurements performed on non-load-bearing elements. Simple FEM modal updating was also applied. As the next example, full-scale measurements were also carried out on a high-rise chimney, and the efficiency of the tuned mass damper was investigated by using two kinds of modal identification techniques. Good correspondence was shown with vibration characteristics obtained by the 2DOF-RD technique and the Frequency Domain Decomposition method. As the last example, the wind-induced response using RTK-GPS and the feasibility of hybrid use of FEM analysis and RTK-GPS for confirming the integrity of structures during strong typhoons were shown. The member stresses obtained by hybrid use of FEM analysis and RTK-GPS were close to the member stresses measured by strain gauges.

Behavioral Characteristics of the Yangsan Fault based on Geometric Analysis of Fault Slip (단층슬립의 기하분석에 의한 양산단층의 거동 특성)

  • Chang, Chun-Joong;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • In order to assess the fault behavior by the geometric analysis of fault slip, the study area between Yangsan city and Shinkwang-myon, Pohang city along the strike of the Yangsan fault is divided into 5 domains($A{\sim}E$ domains) based on the strike change of main fault, the type of fault termination, the cyclic variation of fault zone width, deformation pattern of fault rocks and angular deviation of secondary shears. And, we would apply the relationship between the mode of fault sliding and the resultant deformation texture obtained from previous several experimental studies of simulated fault gouge to the study of the Yangsan fault. To understand sliding behavior of the fault we measured the data of fault attitude and fault slip, and analyzed relationships between the main fault and secondary Riedel shear along the Yangsan fault. The sliding behavioral patterns in each section were analyzed as followings; the straight sections of A, D and E domains were analyzed as the creeping section of stably sliding. In contrast, the curved section of B domain was analyzed as the locked section of stick-slip movement.

A Network-Distributed Design Optimization Approach for Aerodynamic Design of a 3-D Wing (3차원 날개 공력설계를 위한 네트워크 분산 설계최적화)

  • Joh, Chang-Yeol;Lee, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.12-19
    • /
    • 2004
  • An aerodynamic design optimization system for three-dimensional wing was developed as a part of the future MDO framework. The present design optimization system includes four modules such as geometry design, grid generation, flow solver and optimizer. All modules were based on commercial softwares and programmed to have automated execution capability in batch mode utilizing built-in script and journaling. The integration of all modules into the system was accomplished through programming using Visual Basic language. The distributed computational environment based on network communication was established to save computational time especially for time-consuming aerodynamic analyses. The distributed aerodynamic computations were performed in conjunction with the global optimization algorithm of response surface method, instead of using usual parallel computation based on domain decomposition. The application of the design system in the drag minimization problem demonstrated considerably enhanced efficiency of the design process while the final design showed reasonable results of reduced drag.

Comparative Modeling and Molecular Dynamics Simulation of Substrate Binding in Human Fatty Acid Synthase: Enoyl Reductase and β-Ketoacyl Reductase Catalytic Domains

  • John, Arun;Umashankar, Vetrivel;Krishnakumar, Subramanian;Deepa, Perinkulam Ravi
    • Genomics & Informatics
    • /
    • v.13 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • Fatty acid synthase (FASN, EC 2.3.1.85), is a multi-enzyme dimer complex that plays a critical role in lipogenesis. This lipogenic enzyme has gained importance beyond its physiological role due to its implications in several clinical conditions-cancers, obesity, and diabetes. This has made FASN an attractive pharmacological target. Here, we have attempted to predict the theoretical models for the human enoyl reductase (ER) and ${\beta}$-ketoacyl reductase (KR) domains based on the porcine FASN crystal structure, which was the structurally closest template available at the time of this study. Comparative modeling methods were used for studying the structure-function relationships. Different validation studies revealed the predicted structures to be highly plausible. The respective substrates of ER and KR domains-namely, trans-butenoyl and ${\beta}$-ketobutyryl-were computationally docked into active sites using Glide in order to understand the probable binding mode. The molecular dynamics simulations of the apo and holo states of ER and KR showed stable backbone root mean square deviation trajectories with minimal deviation. Ramachandran plot analysis showed 96.0% of residues in the most favorable region for ER and 90.3% for the KR domain, respectively. Thus, the predicted models yielded significant insights into the substrate binding modes of the ER and KR catalytic domains and will aid in identifying novel chemical inhibitors of human FASN that target these domains.

A Study on the Fashion Item of the Symbolic Fashion Icons in the 20th Century (20세기 상징적 패션 아이콘에 따른 아이템 연구)

  • Lee, Eun-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.12 no.1
    • /
    • pp.89-101
    • /
    • 2010
  • The purpose of this study was to investigate the fashion item of the symbolic fashion icons in the 20th century. The symbolism of fashion icons was grouped into four classes according to the influence of a social-cultural change. 1. Icons between dream and reality: A dreary emotion that was caused by material richness has a longing for an ideal image. A typical style was Art Nouveau style, which pressed into a grotesque S-bend. While as the world placed on a economic reconstruction after World War I, rational fashion icon which pursued more function and simplify than cumbersome style and complexity came out. 2. Icons between solid and liquid: A solid icons was connected with a mode of female body during World War 1. This extremely stylized female figure. Flowing fabrics enveloped the stylized female figure and they brought a liquid icons into relief. 3. Icons between uniformity and variety: At a time when uniformity was appeared strongly within 20th century is during World War II and about 1940-1950. The uniformal icon was classified into uniformity by uniform and by mass production. A repugnance for the uniformity and imitation of fashion was tried a new fashion style. It could be called with the various of fashion icon. 4. Icons between social secession and rediscovery: In 1950-1960, 1970-1990, and the end of 20th century, the advent of the young culture was born a consumer who newly breaks in fashion. It could be included within the domain of social secession icon. While the rediscovery of fashion icon was associated with experimental new fibers, leotard, suitable replacement for wool or acrylic knit, silk that could stretch in any direction, new fabrics that were transparent, took color beautifully, and could be painted, tie-dyed, or embroidered.

  • PDF

TVC Actuation Tests and Analyses for Real-Sized Kick Motor Assembly of KSLV-I (KSLV-I 실물형 킥모터조합체 TVC 구동특성시험 및 분석)

  • Sun, Byung-Chan;Park, Yong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.146-156
    • /
    • 2007
  • In this paper, the TVC actuation test and analysis results for a flexible seal kick motor nozzle are presented. A real-sized test model of KSLV-I kick motor system is applied to water pressurizing TVC tests which investigate the property changes in TVC nozzle expansion and TVC actuation performance against chamber pressure changes. The equipments which are required for TVC actuation tests are briefly explained. The TVC actuation tests are firstly accomplished in static mode, which reveals TVC error characteristics including thrust misalignment, control accuracy, and TVC stroke increase, etc. The properties in frequency domain is given via dynamic tests. These results may play an important role in enhancing the TVC control performance of KSLV-I.

  • PDF

Adaptation of Modal Parameter and Elastic Modulus Estimation Method for PSC Bridge Based on Ambient Vibration (상시 진동 계측을 기반으로 한 PSC 교량의 모드계수 및 탄성계수 추정기법 적용)

  • Lee, Sung-Jin;Kim, Saang-Bum;Choi, Kyu-Yong;Lee, Tae-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.574-577
    • /
    • 2007
  • 본 논문에서는 실 시공 중인 PSC 교량에 대하여 풍하중에 의한 상시 진동 계측 자료을 기반으로, 교량의 동특성(고유진동수, 모드형상)을 추정하였으며, 이를 바탕으로 대상 교량의 탄성계수를 추정하여 정적 계측을 통한 탄성계수 결과와 비교하였다. 본 논문에서 사용한 동특성 추정 기법은, 대표적인 주파수 영역 해석 방법인 Frequency Domain Decomposition(FDD) 방법과 시간영역 해석 방법인 Stochastic Subspace Identification(SSI) 방법을 이용하였다. 탄성계수 추정은 유한요소모델과 계측 결과를 이용하여 두 개의 결과 차이가 수렴하도록 하는 반복 계산을 통해 탄성계수를 추정하였다. 우선, 탄성계수 추정 기법의 검증을 위해, 수치 해석을 통하여 그 기법을 검증하였으며, 해석 결과 정확한 탄성계수값을 추정하였으며, 이를 통해 본 논문에서 적용한 탄성계수 추정법에 대한 신뢰도를 확인하였다. 이를 바탕으로 사용된 추정 기법을 실 교량에 적용하기 위해 실제 상시 진동 계측 값을 바탕으로 실교량의 동특성 및 탄성계수를 추정하였다. FDD 및 SSI 기법을 통한 모드 해석 결과, 두 기법 모두 유사한 결과를 나타내어 FDD 및 SSI 두 방법에 대한 결과의 신뢰도를 확인 할 수 있었다. 추정 탄성계수 값은 거더 단면내 설치한 응력계 및 변형률계를 통한 계측 결과값의 범위 내에 있음을 확인하였다. 따라서 본 논문에서 적용한 교량의 상시 진동 데이터를 바탕으로 한동특성 및 탄성계수 추정법이 구조물의 대략적인 탄성계수 및 이에 따른 구조물의 전체적인 건전도를 파악하는데 도움이 되리라 생각된다.

  • PDF

Evaluation on the Usefulness of Ultrasound Image Speckle Reduction Using Total Variation Denoising (TVD) Method in Laplacian Pyramid (라플라시안 피라미드 기반 총변동 잡음제거 기법을 이용한 초음파 영상 스펙클 제거 유용성 평가)

  • Moon, J.H.;Choi, D.H.;Lee, S.Y.;Tae, Ki-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.140-146
    • /
    • 2016
  • The ultrasound imaging in medical diagnosis has become a popular modality because of its safe, noninvasive, portable, relatively inexpensive, and provides a real-time image formation. However, usefulness of ultrasound imaging is at times limited due to the presence of signal-dependent noise like as speckle. Therefore, noise reduction is very important, as various types of noise generated limits the effectiveness of medical image diagnosis. This paper introduces a speckle noise reduce algorithm using total variation denoising (TVD) in Laplacian pyramid. With this method, speckle is removed by TVD of bandpass ultrasound images in Laplacian pyramid domain. For TVD in each pyramid layer, a ${\lambda}$ is selected by trial-and-error method. The visual comparison of despeckled 'in vivo' ultrasound images from pancreas shows that the proposed method could effectively preserve edges and detailed structures while thoroughly suppressing speckle. For a Simulated B-mode image, contrast-to-noise-ratio (CNR) and signal-to-noise-ratio (SNR) were obtained like 4.65 dB and 14.11 dB, respectively. The results show that the proposed method can conduct better than some of the existing methods in terms of the CNR and the SNR.

OMA of model steel structure retrofitted with CFRP using earthquake simulator

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.689-697
    • /
    • 2017
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Beams of the model steel structure are then retrofitted by using CFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of FRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of CFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 34.43% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.