• Title/Summary/Keyword: Domain Generation Algorithm

Search Result 116, Processing Time 0.025 seconds

A New Approach of Domain Dictionary Generation

  • Xi, Su Mei;Cho, Young-Im;Gao, Qian
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • A Domain Dictionary generation algorithm based on pseudo feedback model is presented in this paper. This algorithm can increase the precision of domain dictionary generation algorithm. The generation of Domain Dictionary is regarded as a domain term retrieval process: Assume that top N strings in the original retrieval result set are relevant to C, append these strings into the dictionary, retrieval again. Iterate the process until a predefined number of domain terms have been generated. Experiments upon corpus show that the precision of pseudo feedback model based algorithm is much higher than existing algorithms.

Quadrilateral Mesh Generation on Trimmed NURBS Surfaces

  • Chae, Soo-Won;Kwon, Ki-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.592-601
    • /
    • 2001
  • An automatic mesh generation scheme with unstructured quadrilateral elements on trimmed NURBS surfaces has been developed. In this paper NURBS surface geometries in the IGES format have been employed to represent geometric models. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been modified. As for the surface meshing, an indirect 2D approach is proposed in which both quasi-expanded planes and projection planes are employed. Sampled meshes for complex models are presented to demonstrate the robustness of the algorithm.

  • PDF

Automatic Generation System for Quadrilateral Meshes on NURBS Surfaces (NURBS 곡면에서 사각형 요소망의 자동생성 시스템)

  • Kim, Hyung-Il;Park, Jang-Won;Kwon, Ki-Youn;Cho, Yun-Won;Chae, Soo-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.894-899
    • /
    • 2000
  • An automatic mesh generation system with unstructured quadrilateral elements on trimmed NURBS surfaces has been developed.. In this paper, NURBS surface geometries in the IGES format have been used to represent model shape. NURBS surface is represented as parametric surface. So each surface could be mapped to a 2D parametric plane through the parametric domain. And then meshes with quadrilateral elements are constructed in this plane. Finally, the constructed meshes are mapped back to the original 3D surface through the parametric domain. In this paper, projection plane, quasi-expanded plane and parametric Plane are used as 2D mesh generation plane. For mapping 3D surface to parametric domain, Newton-Rhapson Method is employed. For unstructured mesh generation with quadrilateral elements on 2D plane, a domain decomposition algorithm using loop operators has been employed. Sample meshes are represented to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Automatic Mesh Generation by Delaunay Triangulation and Its Application to Remeshing (Delaunay 삼각화기법을 이용한 유한요소망의 자동생성과 격자재구성에의 응용)

  • Jeong, Hyeon-Seok;Kim, Yong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.553-563
    • /
    • 1996
  • An algorithm for automatic mesh generation of two-dimensional arbitrary planar domain is proposed by using Delaunay triangulation algorithm. An efficient algorithm is proposed for the construction of Delaunay triangulation algorithm over convex planar domain. From the definition of boundary, boundary nodes are first defined and then interior nodes are generated ensuring the Delaunay property. These interior nodes and the boundary nodes are then linked up together to produce a valid triangular mesh for any finite element analysis. Through the various example, it is found that high-quality triangular element meshes are obtained by Delaunay algorithm, showing the robustness of the current method. The proposed mesh generation scheme has been extended to automatic remeshing, which is applicable to FE analysis including large deformation and large distortion of elements.

Optimization of Fuzzy Car Controller Using Genetic Algorithm

  • Kim, Bong-Gi;Song, Jin-Kook;Shin, Chang-Doon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.222-227
    • /
    • 2008
  • The important problem in designing a Fuzzy Logic Controller(FLC) is generation of fuzzy control rules and it is usually the case that they are given by human experts of the problem domain. However, it is difficult to find an well-trained expert to any given problem. In this paper, I describes an application of genetic algorithm, a well-known global search algorithm to automatic generation of fuzzy control rules for FLC design. Fuzzy rules are automatically generated by evolving initially given fuzzy rules and membership functions associated fuzzy linguistic terms. Using genetic algorithm efficient fuzzy rules can be generated without any prior knowledge about the domain problem. In addition expert knowledge can be easily incorporated into rule generation for performance enhancement. We experimented genetic algorithm with a non-trivial vehicle controling problem. Our experimental results showed that genetic algorithm is efficient for designing any complex control system and the resulting system is robust.

An Efficient Triangular Mesh Generation Algorithm using Domain-wise Hash Structure (영역기반 해쉬구조를 이용한 효율적 삼각형 자동 요소망 생성 알고리듬 개발)

  • Kim, Tae-Joo;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.41-48
    • /
    • 2004
  • In this work, a domain-wise hash structure is developed for efficient data handling, and by using the developed domain-wise hash structure, an automatic triangular mesh generation algorithm is proposed. To generate the optimal nodal points and triangles efficiently, the advancing layer method and Delaunay triangulation method are utilized. To investigate the performance of the proposed algorithm, benchmarking tests are carried out for various models including convex, concave and complicated shapes through the developed object oriented C++ mesh generation code.

Application to Generation Expansion Planning of Evolutionary Programming (진화 프로그래밍의 전원개발계획에의 적용 연구)

  • Won, Jong-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.4
    • /
    • pp.180-187
    • /
    • 2001
  • This paper proposes an efficient evolutionary programming algorithm for solving a generation expansion planning(GEP) problem known as a highly-nonlinear dynamic problem. Evolutionary programming(EP) is an optimization algorithm based on the simulated evolution (mutation, competition and selection). In this paper, new algorithm is presented to enhance the efficiency of the EP algorithm for solving the GEP problem. By a domain mapping procedure, yearly cumulative capacity vectors are transformed into one dummy vector, whose change can yield a kind of trend in the cost value. To validate the proposed approach, this algorithm is tested on two cases of expansion planning problems. Simulation results show that the proposed algorithm can provide successful results within a resonable computational time compared with conventional EP and dynamic programming.

  • PDF

An Algorithm of Automatic Mesh Generation by Recursive Subdivisions (순환적 분할에 의한 유한 요소망 자동 생성 알고리즘)

  • 이재영
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.145-155
    • /
    • 1996
  • This paper suggests a new algorithm of automatic mesh generation over planar domains with arbitrarily shaped boundaries and control curves. The algorithm is based on the method of recursively subdividing the domain by the path connecting, with minimum penalty value, two points on the super-loop, which consists of the boundaries and the control curves, The algorithm is not subject to any limitation on the shape of the domain, and its process can be fully automated. Therefore, this algorithm can be implemented into computer programs which require minimal user intervention while generating finite element meshes over complicated domains. This algorithm can also be easily extended for application to the generation of meshes over curved surfaces, or to the adaptive mesh generation.

  • PDF

Automatic Mesh Generation with Quadrilateral Finite Elements (사각형 유한요소망의 자동생성)

  • 채수원;신보성;민중기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2995-3006
    • /
    • 1993
  • An automatic mesh generation scheme has been developed for finite element analysis with two-dimensional, quadrilateral elements. The basic strategies of the method are to transform the analysis domain into loops with key nodes and the loops are recursively subdivided into subloops with the use of best split lines. Finally by using the basic loop operators, the meshes are completed. In this algorithm an eight-node loop operator is proposed, which is useful in the area where the change of element size is large and the splitting criteria for subdividing the loops have also been modified to the existing algorithms. Lines, arcs, and cubic spline curves are used to define the boundaries of analysis domain. Sample meshes for several geometries are presented to demonstrate the robustness of the algorithm.

Optimazation of Simulated Fuzzy Car Controller Using Genetic Algorithm (유전자 알고즘을 이용한 자동차 주행 제어기의 최적화)

  • Kim Bong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.212-219
    • /
    • 2006
  • The important problem in designing a Fuzzy Logic Controller(FLC) is generation of fuzzy control rules and it is usually the case that they are given by human experts of the problem domain. However, it is difficult to find an well-trained expert to any given problem. In this paper, I describes an application of genetic algorithm, a well-known global search algorithm to automatic generation of fuzzy control rules for FLC design. Fuzzy rules are automatically generated by evolving initially given fuzzy rules and membership functions associated fuzzy linguistic terms. Using genetic algorithm efficient fuzzy rules can be generated without any prior knowledge about the domain problem. In addition expert knowledge can be easily incorporated into rule generation for performance enhancement. We experimented genetic algorithm with a non-trivial vehicle controling problem. Our experimental results showed that genetic algorithm is efficient for designing any complex control system and the resulting system is robust.