• Title/Summary/Keyword: Domain Design

Search Result 2,339, Processing Time 0.033 seconds

Design of Directional Structural-Acoustic Coupled Radiator in Wave Number Domain (파수 영역에서 지향성 구조-음향 연성 방사체 설계)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.240-243
    • /
    • 2005
  • A design procedure using spatial Fourier transform is presented for a structural-acoustic coupled radiator that can emit sound in the desired direction with high power and low side lobe level. The design procedure consists of three steps. Firstly, the structural-acoustic coupled radiator is chosen to obtain strong coupling between structural vibration and acoustic pressure. The radiator is composed by two spaces which are separated by a wall. Spaces can be categorized as reverberant finite space and unbounded semi-infinite space, and the wall are composed of two plates and an opening. The velocities on the wall are predicted. Secondly, directivity and energy distribution of radiator are predicted in wave number domain using spatial Fourier transform. Finally, optimal design variables are calculated using a dual optimal algorithm. Its computational example is presented including the directivity and resulting pressure distribution using proposed procedure.

  • PDF

A Model-based Methodology for Application Specific Energy Efficient Data path Design Using FPGAs (FPGA에서 에너지 효율이 높은 데이터 경로 구성을 위한 계층적 설계 방법)

  • Jang Ju-Wook;Lee Mi-Sook;Mohanty Sumit;Choi Seonil;Prasanna Viktor K.
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.451-460
    • /
    • 2005
  • We present a methodology to design energy-efficient data paths using FPGAs. Our methodology integrates domain specific modeling, coarse-grained performance evaluation, design space exploration, and low-level simulation to understand the tradeoffs between energy, latency, and area. The domain specific modeling technique defines a high-level model by identifying various components and parameters specific to a domain that affect the system-wide energy dissipation. A domain is a family of architectures and corresponding algorithms for a given application kernel. The high-level model also consists of functions for estimating energy, latency, and area that facilitate tradeoff analysis. Design space exploration(DSE) analyzes the design space defined by the domain and selects a set of designs. Low-level simulations are used for accurate performance estimation for the designs selected by the DSE and also for final design selection We illustrate our methodology using a family of architectures and algorithms for matrix multiplication. The designs identified by our methodology demonstrate tradeoffs among energy, latency, and area. We compare our designs with a vendor specified matrix multiplication kernel to demonstrate the effectiveness of our methodology. To illustrate the effectiveness of our methodology, we used average power density(E/AT), energy/(area x latency), as themetric for comparison. For various problem sizes, designs obtained using our methodology are on average $25\%$ superior with respect to the E/AT performance metric, compared with the state-of-the-art designs by Xilinx. We also discuss the implementation of our methodology using the MILAN framework.

Multi-Domain Structural-Acoustic Coupling Analysis Using the Finite Element and Boundary Element Techniques

  • Ju, Hyeon-Don;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2001
  • A new approach to analyze the multi-domain acoustic system divided and enclosed by flexible structures is presented in this paper. The boundary element formulation of the Helmholtz integral equation is used for the internal fields and the finite element formulation for the structures surrounding the fields. We developed a numerical analysis program for the structural-acoustic coupling problems of the multi-domain system, in which boundary conditions such as the continuity of normal particle velocity and sound pressure in the structural interfaces between Field 1 and Field 2 are not needed. The validity of the numerical analysis program is verified by comparing the numerical results with the experimental ones. Example problems are included to investigate the characteristics of the coupled multi-domain system.

  • PDF

An Experimental Study on the Stochastic Control of a Flexible Structural System (유연한 구조물의 확률론적 제어에 대한 실험적 연구)

  • Kim, Dae-Jung;Heo, Hoon
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.502-508
    • /
    • 1999
  • Newly developed control methodology applied to dynamic system under random disturbance is investigated and its performance is verified experimentall. Flexible cantilever beam sticked with piezofilm sensor and piezoceramic actuator is modelled in physical domain. Dynamic moment equation for the system is derived via Ito's stochastic differential equation and F-P-K equation. Also system's characteristics in stochastic domain is analyzed simultaneously. LQG controller is designed and used in physical and stochastic domain as wall. It is shown experimentally that randomly excited beam on the base is controlled effectively by designed LQG controller in physical domain. By comparing the result with that of LQG controller designed in stochastic domain, it is shown that new control method, what we called $\ulcorner$Heo-stochastic controller design technique$\lrcorner$, has better performance than conventional ones as a controller.

  • PDF

Earthquake stresses and effective damping in concrete gravity dams

  • Akpinar, Ugur;Binici, Baris;Arici, Yalin
    • Earthquakes and Structures
    • /
    • v.6 no.3
    • /
    • pp.251-266
    • /
    • 2014
  • Dynamic analyses for a suite of ground of motions were conducted on concrete gravity dam sections to examine the earthquake induced stresses and effective damping. For this purpose, frequency domain methods that rigorously incorporate dam-reservoir-foundation interaction and time domain methods with approximate hydrodynamic foundation interaction effects were employed. The maximum principal tensile stresses and their distribution at the dam base, which are important parameters for concrete dam design, were obtained using the frequency domain approach. Prediction equations were proposed for these stresses and their distribution at the dam base. Comparisons of the stress results obtained using frequency and time domain methods revealed that the dam height and ratio of modulus of elasticity of foundation rock to concrete are significant parameters that may influence earthquake induced stresses. A new effective damping prediction equation was proposed in order to estimate earthquake stresses accurately with the approximate time domain approach.

Stochastic FE analysis of semi-infinite domain using infinite elements (무한요소를 이용한 반무한영역의 추계론적 유한요소해석)

  • 최창근;노혁천
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.11-18
    • /
    • 1998
  • In this paper the stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is expanded to include the infinite finite elements. The semi-infinite domain can be thought as to have more uncertainties than the ordinary finite domain in material constants, which shows the needs of and the importance of the stochastic finite element analysis. The Bettess's infinite element is adopted with the theoretical decomposition of the strain matrix to calculate the deviatoric stiffness of the semi-infinite domains. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions giving the rational results which should be considered in the design of structures on semi-infinite domains.

  • PDF

Improved Weighted Integral Method and Application to Analysis of Semi-infinite Domain (개선된 가중적분법과 반무한 영역의 해석)

  • 노혁천;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.369-376
    • /
    • 2002
  • The stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is improved to include the higher order terms in expanding the displacement vector. To improve the weighted integral method, the Lagrangian remainder is taken into account in the expansion of the status variable with respect to the mean value of the random variables. In the resulting formulae only the 'proportionality coefficients' are introduced in the resulting equation, therefore no additional computation time and memory requirement is needed. The equations are applied in analyzing the semi-infinite domain. The results obtained by the improved weighted integral method are reasonable and are in good agreement with those of the Monte Carlo simulation. To model the semi-infinite domain, the Bettess's infinite element is adopted, where the theoretical decomposition of the strain-displacement matrix to calculate the deviatoric stiffness of the semi-infinite domains is introduced. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions which is thought to be rational and should be considered in the design of structures on semi-infinite domains.

  • PDF

Product data model for PLM system

  • Li, Yumei;Wan, Li;Xiong, Tifan
    • International Journal of CAD/CAM
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Product lifecycle management (PLM) is a new business strategy for enterprise's product R&D. A PLM system holds and maintaining the integrity of the product data produced throughout its entire lifecycle. There is, therefore, a need to build a safe and effective product data model to support PLM system. The paper proposes a domain-based product data model for PLM. The domain modeling method is introduced, including the domain concept and its defining standard along the product evolution process. The product data model in every domain is explained, and the mapping rules among these models are discussed. Mapped successively among these models, product data can be successfully realized the dynamic evolution and the historical traceability in PLM system.

  • PDF

Design and Implementation of the Enode Operating System for the Active Network (능동 네트워크를 위한 Enode 운영체제 설계 및 구현)

  • 장승주;나중찬;이영석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1831-1839
    • /
    • 2003
  • This paper suggests Enode Operating Systems that is core part of active network. It iscomposed of five parts: domain, channel, thread, memory and file module. The domain and channel module among five parts are the main function. The remaining parts that are the thread, memory, and file are the supporting module for the domain and channel. The domain module manages active network It creates and deletes domain data structure. The channel module has an inchan, outchan, and cutchan. We also test the Enode Operating Systems to verify suggesting concept of node Operating System.

A Study on the Development of a Quality-Driven CIM System (part l: Framework) (품질 지향적 CIM시스템 개발에 관한 연구 (제1부:Freamwork))

  • Kang, Mujin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.63-69
    • /
    • 1996
  • As the significance of quality in the sense of customer satisfaction is growing, the management of quality becomes one of the main interests in the manufacturing systems research. This paper presents the concept of quality-driven CIM(Computer Integrated Manufacturing) system which is composed of a business process domain and a quality domain. In the business process domain, business functions are integrated by conventional design and manufacturing databases on the one hand, and an integrated quality system is interlinked to them via several quality modules on the other hand. Quality information model connects the business process domain with the quality domain where various types of quality data are stored in the form of quality database. This framework helps a manufacturing enterprise to implement the quality-driven CIM system to achieve its final objective "customer satisfaction".ion".uot;.

  • PDF