• Title/Summary/Keyword: Domain Decomposition Algorithm

Search Result 100, Processing Time 0.021 seconds

Modal identification of Canton Tower under uncertain environmental conditions

  • Ye, Xijun;Yan, Quansheng;Wang, Weifeng;Yu, Xiaolin
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.353-373
    • /
    • 2012
  • The instrumented Canton Tower is a 610 m high-rise structure, which has been considered as a benchmark problem for structural health monitoring (SHM) research. In this paper, an improved automatic modal identification method is presented based on a natural excitation technique in conjunction with the eigensystem realization algorithm (NExT/ERA). In the proposed modal identification method, damping ratio, consistent mode indicator from observability matrices (CMI_O) and modal amplitude coherence (MAC) are used as criteria to distinguish the physically true modes from spurious modes. Enhanced frequency domain decomposition (EFDD), the data-driven stochastic subspace identification method (SSI-DATA) and the proposed method are respectively applied to extract the modal parameters of the Canton Tower under different environmental conditions. Results of modal parameter identification based on output-only measurements are presented and discussed. User-selected parameters used in those methods are suggested and discussed. Furthermore, the effect of environmental conditions on the dynamic characteristics of Canton tower is investigated.

A STUDY ON THE EFFICIENCY OF AERODYNAMIC DESIGN OPTIMIZATION IN DISTRIBUTED COMPUTING ENVIRONMENT (분산컴퓨팅 환경에서 공력 설계최적화의 효율성 연구)

  • Kim Y.J.;Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.19-24
    • /
    • 2006
  • A research to evaluate the efficiency of design optimization was carried out for aerodynamic design optimization problem in distributed computing environment. The aerodynamic analyses which take most of computational work during design optimization were divided into several jobs and allocated to associated PC clients through network. This is not a parallel process based on domain decomposition in a single analysis rather than a simultaneous distributed-analyses using network-distributed computers. GBOM(gradient-based optimization method), SAO(Sequential Approximate Optimization) and RSM(Response Surface Method) were implemented to perform design optimization of transonic airfoils and evaluate their efficiencies. dimensional minimization followed by direction search involved in the GBOM was found an obstacle against improving efficiency of the design process in the present distributed computing system. The SAO was found fairly suitable for the distributed computing environment even it has a handicap of local search. The RSM is apparently the most efficient algorithm in the present distributed computing environment, but additional trial and error works needed to enhance the reliability of the approximation model deteriorate its efficiency from the practical point of view.

A binary adaptive arithmetic coding algorithm based on adaptive symbol changes for lossless medical image compression (무손실 의료 영상 압축을 위한 적응적 심볼 교환에 기반을 둔 이진 적응 산술 부호화 방법)

  • 지창우;박성한
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2714-2726
    • /
    • 1997
  • In this paper, adaptive symbol changes-based medical image compression method is presented. First, the differenctial image domain is obtained using the differentiation rules or obaptive predictors applied to original mdeical image. Also, the algorithm determines the context associated with the differential image from the domain. Then prediction symbols which are thought tobe the most probable differential image values are maintained at a high value through the adaptive symbol changes procedure based on estimates of the symbols with polarity coincidence between the differential image values to be coded under to context and differential image values in the model template. At the coding step, the differential image values are encoded as "predicted" or "non-predicted" by the binary adaptive arithmetic encoder, where a binary decision tree is employed. The simlation results indicate that the prediction hit ratios of differential image values using the proposed algorithm improve the coding gain by 25% and 23% than arithmetic coder with ISO JPEG lossless predictor and arithmetic coder with differentiation rules or adaptive predictors, respectively. It can be used in compression part of medical PACS because the proposed method allows the encoder be directly applied to the full bit-planes medical image without a decomposition of the full bit-plane into a series of binary bit-planes as well as lower complexity of encoder through using an additions when sub-dividing recursively unit intervals.

  • PDF

A New Carrier frequency Offset Estimation Using CP-ICA Scheme in OFDM Systems (OFDM 시스템에서 CP-ICA 기법을 이용한 새로운 주파수 옵셋 추정)

  • Kim, Jong-Deuk;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1257-1264
    • /
    • 2006
  • The carrier frequency offset causes loss of orthogonality between sub-carriers, thus leads to inter-carrier interference (ICI) in the OFDM symbol. This ICI causes severe degradation of the BER performance of the OFDM receiver. In this paper, we propose a new ICI cancellation algorithm which estimates frequency offset at the time-domain by using CP-ICA method to the received sub-carriers phase rotation. This algorithm is based on a statistical blind estimation method, which mainly utilizes the EVD, rotating phase and the $4^{th}-cumulants$. Since our scheme does not need any training and pilot symbol in estimation, we can expect enhanced bandwidth efficiency in OFDM systems. Simulation results show that the proposed frequency offset estimator is more accurate than the other estimators in $0.0<\varepsilon<1.0$.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Lagrangian Finite Element Analysis of Water Impact Problem (강체-유체 충격문제에 대한 Lagrangian 유한요소 해석)

  • Bum-Sang Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.60-68
    • /
    • 1991
  • The updated Lagrangian Finite Element Method is introduced to analyse rigid body-fluid impact problem which is characterized by incompressible Navier-Stokes equations and impact-contact conditions between free surface and rigid body. For the convenience of numerical computation, velocity fields are splinted into vicous and pressure parts, and then the governing equations and boundary conditions are decomposed in accordance with the decomposition. However, Viscous stresses acting an the solid boundaries are neglected on the assumption that very small velocity gradients may occur during extremely small time interval of the impact. Four coded quadrilateral elements are used to discretize the space domain and the fully explicit time-marching algorithm is employed with a reasonably small time step. At the beginning of each time step, contact velocity of the rigid body is computed from the momentum balance between the body and the fluid. The velocity field is then computed to satisfy the discretized equations of motions and incompressibility and contact constraints as well as an exact free surface boundary condition. At the end of each time step, the fluid domain is updated from the velocity field. In the present time stepping numerical analysis, behaviour of the free surface near the body can be observed without any difficulty which is very important in the water impact problem. The applicability of the algorithm is illustrated by a wedge type falling body problem. The numerical solutions for time-varying pressure distributions and impact loadings acting ion the surface are obtained.

  • PDF

A Network-Distributed Design Optimization Approach for Aerodynamic Design of a 3-D Wing (3차원 날개 공력설계를 위한 네트워크 분산 설계최적화)

  • Joh, Chang-Yeol;Lee, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.12-19
    • /
    • 2004
  • An aerodynamic design optimization system for three-dimensional wing was developed as a part of the future MDO framework. The present design optimization system includes four modules such as geometry design, grid generation, flow solver and optimizer. All modules were based on commercial softwares and programmed to have automated execution capability in batch mode utilizing built-in script and journaling. The integration of all modules into the system was accomplished through programming using Visual Basic language. The distributed computational environment based on network communication was established to save computational time especially for time-consuming aerodynamic analyses. The distributed aerodynamic computations were performed in conjunction with the global optimization algorithm of response surface method, instead of using usual parallel computation based on domain decomposition. The application of the design system in the drag minimization problem demonstrated considerably enhanced efficiency of the design process while the final design showed reasonable results of reduced drag.

Improving Collaborative Filtering with Rating Prediction Based on Taste Space (협업 필터링 추천시스템에서의 취향 공간을 이용한 평가 예측 기법)

  • Lee, Hyung-Dong;Kim, Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.389-395
    • /
    • 2007
  • Collaborative filtering is a popular technique for information filtering to reduce information overload and widely used in application such as recommender system in the E-commerce domain. Collaborative filtering systems collect human ratings and provide Predictions based on the ratings of other people who share the same tastes. The quality of predictions depends on the number of items which are commonly rated by people. Therefore, it is difficult to apply pure collaborative filtering algorithm directly to dynamic collections where items are constantly added or removed. In this paper we suggest a method for managing dynamic collections. It creates taste space for items using a technique called Singular Vector Decomposition (SVD) and maintains clusters of core items on the space to estimate relevance of past and future items. To evaluate the proposed method, we divide database of user ratings into those of old and new items and analyze predicted ratings of the latter. And we experimentally show our method is efficiently applied to dynamic collections.

Digital Image Watermarking Scheme in the Singular Vector Domain (특이 벡터 영역에서 디지털 영상 워터마킹 방법)

  • Lee, Juck Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.122-128
    • /
    • 2015
  • As multimedia information is spread over cyber networks, problems such as protection of legal rights and original proof of an information owner raise recently. Various image transformations of DCT, DFT and DWT have been used to embed a watermark as a token of ownership. Recently, SVD being used in the field of numerical analysis is additionally applied to the watermarking methods. A watermarking method is proposed in this paper using Gabor cosine and sine transform as well as SVD for embedding and extraction of watermarks for digital images. After delivering attacks such as noise addition, space transformation, filtering and compression on watermarked images, watermark extraction algorithm is performed using the proposed GCST-SVD method. Normalized correlation values are calculated to measure the similarity between embedded watermark and extracted one as the index of watermark performance. Also visual inspection for the extracted watermark images has been done. Watermark images are inserted into the lowest vertical ac frequency band. From the experimental results, the proposed watermarking method using the singular vectors of SVD shows large correlation values of 0.9 or more and visual features of an embedded watermark for various attacks.

A Method for Prediction of Quality Defects in Manufacturing Using Natural Language Processing and Machine Learning (자연어 처리 및 기계학습을 활용한 제조업 현장의 품질 불량 예측 방법론)

  • Roh, Jeong-Min;Kim, Yongsung
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.52-62
    • /
    • 2021
  • Quality control is critical at manufacturing sites and is key to predicting the risk of quality defect before manufacturing. However, the reliability of manual quality control methods is affected by human and physical limitations because manufacturing processes vary across industries. These limitations become particularly obvious in domain areas with numerous manufacturing processes, such as the manufacture of major nuclear equipment. This study proposed a novel method for predicting the risk of quality defects by using natural language processing and machine learning. In this study, production data collected over 6 years at a factory that manufactures main equipment that is installed in nuclear power plants were used. In the preprocessing stage of text data, a mapping method was applied to the word dictionary so that domain knowledge could be appropriately reflected, and a hybrid algorithm, which combined n-gram, Term Frequency-Inverse Document Frequency, and Singular Value Decomposition, was constructed for sentence vectorization. Next, in the experiment to classify the risky processes resulting in poor quality, k-fold cross-validation was applied to categorize cases from Unigram to cumulative Trigram. Furthermore, for achieving objective experimental results, Naive Bayes and Support Vector Machine were used as classification algorithms and the maximum accuracy and F1-score of 0.7685 and 0.8641, respectively, were achieved. Thus, the proposed method is effective. The performance of the proposed method were compared and with votes of field engineers, and the results revealed that the proposed method outperformed field engineers. Thus, the method can be implemented for quality control at manufacturing sites.