• Title/Summary/Keyword: Domain Coupled Analysis

Search Result 262, Processing Time 0.03 seconds

Analysis of the peak particle velocity and the bonding state of shotcrete induced by the tunnel blasting (발파시 터널 숏크리트의 최대입자속도와 부착상태평가 분석)

  • Hong, Eui-Joon;Chang, Seok-Bue;Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.247-255
    • /
    • 2010
  • Bonding strength of shotcrete is a significant influential factor which plays the role of collapse prevention of tunnel crown and of debonding prevention of shotcrete induced by the blasting vibration. Thus, the evaluation of the shotcrete bonding state is one of the core components for shotcrete quality control. In this study, the peak particle velocities induced by blasting were measured on the shotcrete in a tunnel construction site and its effect on the bonding state of shotcrete is investigated. Drilling and blasting technique was used for the excavation of intersection tunnel connecting the main tunnel with the service tunnel. Blast-induced vibrations were monitored at some points of the main tunnel and the service tunnel. The shotcrete bonding state was evaluated by using impact-echo test coupled with the time-frequency domain analysis which is called short-time Fourier transformation. Analysis results of blast-induced vibrations and the time-frequency domain impact-echo signals showed that the blasting condition applied to the excavation of intersection tunnel hardly affects on the tunnel shotcrete bonding state. The general blasting practice in Korea was evaluated to have a minor negative impact on shotcrete quality.

Soil-Structure Interaction Analysis Method in Time Domain considering Near-Field Nonlinearity (근역지반의 비선형성을 고려한 시간영역 지반-구조물 상호작용 해석기법의 개발)

  • 김문겸;임윤묵;김태욱;박정열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.309-314
    • /
    • 2001
  • In this study, the nonlinear soil structure interaction analysis method based on finite element and boundary element method is developed. In the seismic region, the nonlinearity of near field soil has to be considered for more exact reflection of soil-structure interaction effect. Thus, nonlinear finite element program coupled with boundary elements is developed for nonlinear soil-structure interaction analysis. Using the developed numerical algorithm, the nonlinear soil-structure interaction analysis is performed and responses due to dynamic forces and seismic excitation are investigated. The developed method is verified by comparing with previous studies.

  • PDF

Three-dimensional Numerical Analysis of Detonation Wave Structures in a Square Tube (정사각관 내 데토네이션 파 구조의 삼차원 수치 해석)

  • Cho, Deok-Rae;Won, Su-Hee;Shin, Jae-Ryul;Lee, Soo-Han;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Three dimensional structures of detonation waves propagating in a square tube were investigated using a high resolution CFD code coupled with a conservation equation of reaction progress variable and an one-step irreversible reaction. The code were parallelized based on domain decomposition technique using MPI library. The computations were carried on an in-house Windows cluster with AMD processors. Three-dimensional unsteady analysis results in the smoked-foil records caused by the instabilities of the detonation waves, which showed the rectangular and diagonal modes of detonation instabilities depending on the initial condition of disturbances and the spinning detonation for case of small reaction constant.

Regulation of AKT Activity by Inhibition of the Pleckstrin Homology Domain-PtdIns(3,4,5)P3 Interaction Using Flavonoids

  • Kang, Yerin;Jang, Geupil;Ahn, Seunghyun;Lee, Youngshim;Shin, Soon Young;Yoon, Youngdae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1401-1411
    • /
    • 2018
  • The serine-threonine kinase AKT plays a pivotal role in tumor progression and is frequently overactivated in cancer cells; this protein is therefore a critical therapeutic target for cancer intervention. We aimed to identify small molecule inhibitors of the pleckstrin homology (PH) domain of AKT to disrupt binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3), thereby downregulating AKT activity. Liposome pulldown assays coupled with fluorescence spectrometry were used to screen flavonoids for inhibition of the AKT PH-PIP3 interaction. Western blotting was used to determine the effects of the inhibitors on AKT activation in cancer cells, and in silico docking was used for structural analysis and optimization of inhibitor structure. Several flavonoids showing up to 50% inhibition of the AKT PH-PIP3 interaction decreased the level of AKT activation at the cellular level. In addition, the modified flavonoid showed increased inhibitory effects and the approach would be applied to develop anticancer drug candidates. In this study, we provide a rationale for targeting the lipid-binding domain of AKT, rather than the catalytic kinase domain, in anticancer drug development.

Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm

  • Lee, Hyoungsuk;Song, Min-Churl;Suh, Jung-Chun;Chang, Bong-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.562-577
    • /
    • 2014
  • A reliable steady/transient hydro-elastic analysis is developed for flexible (composite) marine propeller blade design which deforms according to its environmental load (ship speed, revolution speed, wake distribution, etc.) Hydro-elastic analysis based on CFD and FEM has been widely used in the engineering field because of its accurate results however it takes large computation time to apply early propeller design stage. Therefore the analysis based on a boundary element method-Finite Element Method (BEM-FEM) Fluid-Structure Interaction (FSI) is introduced for computational efficiency and accuracy. The steady FSI analysis, and its application to reverse engineering, is designed for use regarding optimum geometry and ply stack design. A time domain two-way coupled transient FSI analysis is developed by considering the hydrodynamic damping ffects of added mass due to fluid around the propeller blade. The analysis makes possible to evaluate blade strength and also enable to do risk assessment by estimating the change in performance and the deformation depending on blade position in the ship's wake. To validate this hydro-elastic analysis methodology, published model test results of P5479 and P5475 are applied to verify the steady and the transient FSI analysis, respectively. As the results, the proposed steady and unsteady analysis methodology gives sufficient accuracy to apply flexible marine propeller design.

Gamma/neutron classification with SiPM CLYC detectors using frequency-domain analysis for embedded real-time applications

  • Ivan Rene Morales;Maria Liz Crespo;Mladen Bogovac;Andres Cicuttin;Kalliopi Kanaki;Sergio Carrato
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.745-752
    • /
    • 2024
  • A method for gamma/neutron event classification based on frequency-domain analysis for mixed radiation environments is proposed. In contrast to the traditional charge comparison method for pulse-shape discrimination, which requires baseline removal and pulse alignment, our method does not need any preprocessing of the digitized data, apart from removing saturated traces in sporadic pile-up scenarios. It also features the identification of neutron events in the detector's full energy range with a single device, from thermal neutrons to fast neutrons, including low-energy pulses, and still provides a superior figure-of-merit for classification. The proposed frequency-domain analysis consists of computing the fast Fourier transform of a triggered trace and integrating it through a simplified version of the transform magnitude components that distinguish the neutron features from those of the gamma photons. Owing to this simplification, the proposed method may be easily ported to a real-time embedded deployment based on Field-Programmable Gate Arrays or Digital Signal Processors. We target an off-the-shelf detector based on a small CLYC (Cs2LiYCl6:Ce) crystal coupled to a silicon photomultiplier with an integrated bias and preamplifier, aiming at lightweight embedded mixed radiation monitors and dosimeter applications.

Propagation and Crosstalk Characteristic Analysis of Pulse Shaped Signals on the Coupled Microstrip Lines (결합 마이크로스트립 선로상의 펄스형태 신호의 전파 및 누화 특성 해석)

  • Park, Sun-Keun;Kim, Nam;Rhee, Sung-Yup;Jang, Woo-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.516-524
    • /
    • 1997
  • The propagation properties of various pulse signal types(square pulse, Gaussian pulse, trapezoid pulse, RF pulse) on coupled microstrip lines are investigated. Numerical integration technique which has its accuracy and is easily simulated, is used to obtain the time domain response of pulse signals. Frequency-dependent characteristics of coupled microstrip line is obtained using Jansen's approximate equation. The propagation properties of pulse signal on coupled microstrip lines is analyzed regarding to its geometric structure (relative permittivity ${varepsilon}_r$ substrate height h, strip width w of the microstrip line) and pulse width ${\tau}$ of signal pulse. The simulation results show that space between two lines is very significant parameter in pulse distortion in comparison of any other parameters. The results of this paper are compatible to the trade-off determination of relative permittivity, substrate height, strip width and pulse width of signal pulse when a design of MIC and MMIC is necessary.

  • PDF

Wide Tuning and Modulation Characteristics Analysis of Coupled-Ring Reflector Laser Diode (결합 링 반사기 레이저 다이오드의 광대역 파장 가변 및 변조 특성 해석)

  • Yoon, Pil-Hwan;Kim, Su-Hyun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.544-547
    • /
    • 2006
  • A time-domain modeling approach is used to study characteristics of a widely tunable coupled-ring reflector (CRR) laser diode(LD). The CRR consists of a bus waveguide and two coupled ring resonators coupled to the bus without resorting to distributed Bragg grating structure. The tuning range can be a few tens of nanometers with a side mode suppression ratio exceeding 35dB through the adjustment of currents into the phase control sections in the rings. The CRR laser diode has long effective cavity length compared to conventional laser diodes. Accordingly, a broad additional resonance peak in the amplitude modulation characteristics is observed between 20 to 30 GHz, implying the extension of amplitude modulation bandwidth.

Analysis of microstrip antenna with waveguide feeding structure (도파관 급전 구조를 가진 마이크로스트립 안테나의 해석)

  • 최상훈;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1740-1746
    • /
    • 1997
  • In this paper, a waveguide-fed slot-coupled microstrip antenna is proposed as enhanced feeding structure of microstrip antenna and an analysis is presented. The presence of dielectric substrate between a stripand a slot is explicitly taken into account in this analysis. The evaluation of the antenna characteristics is carried out using the method of mements and the spectral domain approach in terms of the electric current distribution on the strip and the magnetic current distribution on the slot. From the results, we can conclude that the proposed structure is adequate for array antennas, due to ease of mass porduction and enhanced anteena performance.

  • PDF

Transient coupled thermoelastic analysis by finite element method (유한요소법에 의한 과도연성 열탄성 해석)

  • 이태원;심우진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1408-1416
    • /
    • 1990
  • A powerful and efficient method for finding approximate solutions to initial-boundary-value problems in the transient coupled thermoelasticity is formulated in time domain using the finite element technique with time-marching strategy. The final system equations can be derived by the Guritin's variational principle using the definition of convolution integral. But, the finite element formulation for the equations of motion is modified by differentiating in time. Numerical results to some test problems are compared with analytical and other sophisticated approximate solutions. Stable responces are observed in all the given examples irrespective of incremental time steps and mesh shapes. In addition, it is shown that good numerical results are obtained even in coarser mesh or larger time step comparing to other numerical methods.