• Title/Summary/Keyword: Domain Action

Search Result 198, Processing Time 0.032 seconds

The Change in Perceptions of Category for Environmental Education and Environmental Education Professionalism of Teachers Participating in a In-service Teacher Training Program for Environmental Education (환경교육 연수에 참여한 교사들의 환경교육 범주에 대한 인식과 환경교육 전문성 함양의 변화 분석)

  • Maeng, Hee-Ju;Son, Yeon-A;Choi, Don-Hyung
    • Hwankyungkyoyuk
    • /
    • v.22 no.3
    • /
    • pp.136-151
    • /
    • 2009
  • The purpose of this study was to analyze changes in perceptions of the categories of environmental education and environmental education professionalism of teachers participating in a in-service teacher training programs for environmental education. For this study, surveys and interviews were conducted before and after participation of 20 elementary and secondary school teachers who had participated in 'in-service teacher training program for professional development in environmental education' in August of 2005. Before participation, most of teachers answered that 'Education for Environment' was essential factor among the categories for environmental education. After participation, 15 teachers retained their perception but 5 teachers had changed to 'Education about Environment' or 'Education for Environment'. Environmental professionalism was conducted in '5 ability categories of environment teachers' of Hungerford et al.(1994). Categories has goal domains such as 'Goal domain I (level of basic)', 'Goal domain II (level of conceptual perceptions)', 'Goal domain III (level of investigating and evaluation)', 'Goal domain IV(level of environmental action skill)', 'Goal domain V(level of educational apply)'. Before participation, teachers had a low level of professionalism in environmental areas, but after participation environmental education professionalism improved significantly into the all 'Goal domains'.

  • PDF

Reinforcement learning Speedup method using Q-value Initialization (Q-value Initialization을 이용한 Reinforcement Learning Speedup Method)

  • 최정환
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.13-16
    • /
    • 2001
  • In reinforcement teaming, Q-learning converges quite slowly to a good policy. Its because searching for the goal state takes very long time in a large stochastic domain. So I propose the speedup method using the Q-value initialization for model-free reinforcement learning. In the speedup method, it learns a naive model of a domain and makes boundaries around the goal state. By using these boundaries, it assigns the initial Q-values to the state-action pairs and does Q-learning with the initial Q-values. The initial Q-values guide the agent to the goal state in the early states of learning, so that Q-teaming updates Q-values efficiently. Therefore it saves exploration time to search for the goal state and has better performance than Q-learning. 1 present Speedup Q-learning algorithm to implement the speedup method. This algorithm is evaluated. in a grid-world domain and compared to Q-teaming.

  • PDF

Reinforcement Learning Algorithm Using Domain Knowledge

  • Young, Jang-Si;Hong, Suh-Il;Hak, Kong-Sung;Rok, Oh-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.173.5-173
    • /
    • 2001
  • Q-Learning is a most widely used reinforcement learning, which addresses the question of how an autonomous agent can learn to choose optimal actions to achieve its goal about any one problem. Q-Learning can acquire optimal control strategies from delayed rewards, even when the agent has no prior knowledge of the effects of its action in the environment. If agent has an ability using previous knowledge, then it is expected that the agent can speed up learning by interacting with environment. We present a novel reinforcement learning method using domain knowledge, which is represented by problem-independent features and their classifiers. Here neural network are implied as knowledge classifiers. To show that an agent using domain knowledge can have better performance than the agent with standard Q-Learner. Computer simulations are ...

  • PDF

The diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1

  • Harikrishna, Reddy R.;Kim, Hackyoung;Noh, Kwangmo;Kim, Young Jun
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.192-196
    • /
    • 2014
  • RNA polymerase II carboxyl-terminal domain (pol II CTD) phosphatases are a newly emerging family of phosphatases that are members of DXDX (T/V). The subfamily includes Small CTD phosphatases, like SCP1, SCP2, SCP3, TIMM50, HSPC129 and UBLCP. Extensive study of SCP1 has elicited the diversified roles of the small C terminal domain phosphatase. The SCP1 plays a vital role in various biological activities, like neuronal gene silencing and preferential Ser5 dephosphorylation, acts as a cardiac hypertrophy inducer with the help of its intronic miRNAs, and has shown a key role in cell cycle regulation. This short review offers an explanation of the mechanism of action of small CTD phosphatases, in different biological activities and metabolic processes.

Partially Observable Markov Decision Processes (POMDPs) and Wireless Body Area Networks (WBAN): A Survey

  • Mohammed, Yahaya Onimisi;Baroudi, Uthman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1036-1057
    • /
    • 2013
  • Wireless body area network (WBAN) is a promising candidate for future health monitoring system. Nevertheless, the path to mature solutions is still facing a lot of challenges that need to be overcome. Energy efficient scheduling is one of these challenges given the scarcity of available energy of biosensors and the lack of portability. Therefore, researchers from academia, industry and health sectors are working together to realize practical solutions for these challenges. The main difficulty in WBAN is the uncertainty in the state of the monitored system. Intelligent learning approaches such as a Markov Decision Process (MDP) were proposed to tackle this issue. A Markov Decision Process (MDP) is a form of Markov Chain in which the transition matrix depends on the action taken by the decision maker (agent) at each time step. The agent receives a reward, which depends on the action and the state. The goal is to find a function, called a policy, which specifies which action to take in each state, so as to maximize some utility functions (e.g., the mean or expected discounted sum) of the sequence of rewards. A partially Observable Markov Decision Processes (POMDP) is a generalization of Markov decision processes that allows for the incomplete information regarding the state of the system. In this case, the state is not visible to the agent. This has many applications in operations research and artificial intelligence. Due to incomplete knowledge of the system, this uncertainty makes formulating and solving POMDP models mathematically complex and computationally expensive. Limited progress has been made in terms of applying POMPD to real applications. In this paper, we surveyed the existing methods and algorithms for solving POMDP in the general domain and in particular in Wireless body area network (WBAN). In addition, the papers discussed recent real implementation of POMDP on practical problems of WBAN. We believe that this work will provide valuable insights for the newcomers who would like to pursue related research in the domain of WBAN.

Aerodynamic flutter analysis of a new suspension bridge with double main spans

  • Zhang, W.M.;Ge, Y.J.;Levitan, M.L.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.187-208
    • /
    • 2011
  • Based on the ANSYS, an approach of full-mode aerodynamic flutter analysis for long-span suspension bridges has been presented in this paper, in which the nonlinearities of structure, aerostatic and aerodynamic force due to the deformation under the static wind loading are fully considered. Aerostatic analysis is conducted to predict the equilibrium position of a bridge structure in the beginning, and then flutter analysis of such a deformed bridge structure is performed. A corresponding computer program is developed and used to predict the critical flutter wind velocity and the corresponding flutter frequency of a long-span suspension bridge with double main span. A time-domain analysis of the bridge is also carried out to verify the frequency-domain computational results and the effectiveness of the approach proposed in this paper. Then, the nonlinear effects on aerodynamic behaviors due to aerostatic action are discussed in detail. Finally, the results are compared with those of traditional suspension bridges with single main span. The results show that the aerostatic action has an important influence on the flutter stability of long-span suspension bridges. As for a suspension bridge with double main spans, the flutter mode is the first anti-symmetrical torsional vibration mode, which is also the first torsional vibration mode in natural mode list. Furthermore, a double main-span suspension bridge is better in structural dynamic and aerodynamic performances than a corresponding single main-span structure with the same bridging capacity.

Recognizing the Direction of Action using Generalized 4D Features (일반화된 4차원 특징을 이용한 행동 방향 인식)

  • Kim, Sun-Jung;Kim, Soo-Wan;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.518-528
    • /
    • 2014
  • In this paper, we propose a method to recognize the action direction of human by developing 4D space-time (4D-ST, [x,y,z,t]) features. For this, we propose 4D space-time interest points (4D-STIPs, [x,y,z,t]) which are extracted using 3D space (3D-S, [x,y,z]) volumes reconstructed from images of a finite number of different views. Since the proposed features are constructed using volumetric information, the features for arbitrary 2D space (2D-S, [x,y]) viewpoint can be generated by projecting the 3D-S volumes and 4D-STIPs on corresponding image planes in training step. We can recognize the directions of actors in the test video since our training sets, which are projections of 3D-S volumes and 4D-STIPs to various image planes, contain the direction information. The process for recognizing action direction is divided into two steps, firstly we recognize the class of actions and then recognize the action direction using direction information. For the action and direction of action recognition, with the projected 3D-S volumes and 4D-STIPs we construct motion history images (MHIs) and non-motion history images (NMHIs) which encode the moving and non-moving parts of an action respectively. For the action recognition, features are trained by support vector data description (SVDD) according to the action class and recognized by support vector domain density description (SVDDD). For the action direction recognition after recognizing actions, each actions are trained using SVDD according to the direction class and then recognized by SVDDD. In experiments, we train the models using 3D-S volumes from INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset and recognize action direction by constructing a new SNU dataset made for evaluating the action direction recognition.

Evidence of complex formation between FADD and c-FLIP death effector domains for the death inducing signaling complex

  • Hwang, Eun Young;Jeong, Mi Suk;Park, So Young;Jang, Se Bok
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.488-493
    • /
    • 2014
  • Adaptor protein FADD forms the death inducing signaling complex (DISC) by recruiting the initiating caspases-8 and -10 through homotypic death effector domain (DED) interactions. Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of death ligand-induced apoptosis downstream of death receptors, and FADD competes with procaspase-8/10 for recruitment for DISC. However, the mechanism of action of FADD and c-FLIP proteins remain poorly understood at the molecular level. In this study, we provide evidence indicating that the death effector domain (DED) of FADD interacts directly with the death effector domain of human c-FLIP. In addition, we use homology modeling to develop a molecular docking model of FADD and c-FLIP proteins. We also find that four structure-based mutants (E80A, L84A, K169A and Y171A) of c-FLIP DEDs disturb the interaction with FADD DED, and that these mutations lower the stability of the c-FLIP DED.

PRP4 Kinase Domain Loss Nullifies Drug Resistance and Epithelial-Mesenchymal Transition in Human Colorectal Carcinoma Cells

  • Ahmed, Muhammad Bilal;Islam, Salman Ul;Sonn, Jong Kyung;Lee, Young Sup
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.662-670
    • /
    • 2020
  • We have investigated the involvement of the pre-mRNA processing factor 4B (PRP4) kinase domain in mediating drug resistance. HCT116 cells were treated with curcumin, and apoptosis was assessed based on flow cytometry and the generation of reactive oxygen species (ROS). Cells were then transfected with PRP4 or pre-mRNA-processing-splicing factor 8 (PRP8), and drug resistance was analyzed both in vitro and in vivo. Furthermore, we deleted the kinase domain in PRP4 using Gateway™ technology. Curcumin induced cell death through the production of ROS and decreased the activation of survival signals, but PRP4 overexpression reversed the curcumin-induced oxidative stress and apoptosis. PRP8 failed to reverse the curcumin-induced apoptosis in the HCT116 colon cancer cell line. In xenograft mouse model experiments, curcumin effectively reduced tumour size whereas PRP4 conferred resistance to curcumin, which was evident from increasing tumour size, while PRP8 failed to regulate the curcumin action. PRP4 overexpression altered the morphology, rearranged the actin cytoskeleton, triggered epithelial-mesenchymal transition (EMT), and decreased the invasiveness of HCT116 cells. The loss of E-cadherin, a hallmark of EMT, was observed in HCT116 cells overexpressing PRP4. Moreover, we observed that the EMT-inducing potential of PRP4 was aborted after the deletion of its kinase domain. Collectively, our investigations suggest that the PRP4 kinase domain is responsible for promoting drug resistance to curcumin by inducing EMT. Further evaluation of PRP4-induced inhibition of cell death and PRP4 kinase domain interactions with various other proteins might lead to the development of novel approaches for overcoming drug resistance in patients with colon cancer.

Structural characterization of the putative DNA-binding domain of CP2c and its relevance to zinc binding

  • Ryu, Ki-Sung;Jo, Ku-Sung;Kim, Na-Young;Jeon, Eun-Jae;Park, Sung Jean;Kim, Hyun-Hwi;Kim, Eun-Hee;Kim, Chan-Gil;Kim, Chul Geun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.20-25
    • /
    • 2019
  • The transcription factor CP2c has been recently validated as an oncogenic protein that can serve as a promising target for anticancer therapy. We have recently documented that a recombinant protein corresponding to the putative DNA-binding region (residues 63-244) of CP2c adopted two different conformers, one of which is dominated by zinc binding. However, in the present study, a longer construct encompassing residues 63-302 appeared to form a single structural domain. This domain could be considered to adopt a functionally relevant fold, as the known specific binding of a dodecapeptide to this protein was evident. Hence, the residues 63-302 region rather than 63-244 can be regarded as a natively folded structural domain of CP2c. In addition, it was confirmed that zinc ions can bind to this putative DNA-binding domain of CP2c, which resulted in reduced stability of the protein. In this context, it is suggested that the mode of action of CP2c would resemble that of tumor suppressor p53.