KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.1
/
pp.254-276
/
2019
Since the amount of information on the internet is growing rapidly, it is not easy for a user to find relevant information for his/her query. To tackle this issue, the researchers are paying much attention to Document Summarization. The key point in any successful document summarizer is a good document representation. The traditional approaches based on word overlapping mostly fail to produce that kind of representation. Word embedding has shown good performance allowing words to match on a semantic level. Naively concatenating word embeddings makes common words dominant which in turn diminish the representation quality. In this paper, we employ word embeddings to improve the weighting schemes for calculating the Latent Semantic Analysis input matrix. Two embedding-based weighting schemes are proposed and then combined to calculate the values of this matrix. They are modified versions of the augment weight and the entropy frequency that combine the strength of traditional weighting schemes and word embedding. The proposed approach is evaluated on three English datasets, DUC 2002, DUC 2004 and Multilingual 2015 Single-document Summarization. Experimental results on the three datasets show that the proposed model achieved competitive performance compared to the state-of-the-art leading to a conclusion that it provides a better document representation and a better document summary as a result.
This paper presents a method for clustering short text documents, such as news headlines, social media statuses, or instant messages. Due to the characteristics of these documents, which are usually short and sparse, an appropriate technique is required to discover hidden knowledge. The objective of this paper is to identify the combination of document representation, document distance, and document clustering that yields the best clustering quality. Document representations are expanded by external knowledge sources represented by a Distributed Representation. To cluster documents, a K-means partitioning-based clustering technique is applied, where the similarities of documents are measured by word mover's distance. To validate the effectiveness of the proposed method, experiments were conducted to compare the clustering quality against several leading methods. The proposed method produced clusters of documents that resulted in higher precision, recall, F1-score, and adjusted Rand index for both real-world and standard data sets. Furthermore, manual inspection of the clustering results was conducted to observe the efficacy of the proposed method. The topics of each document cluster are undoubtedly reflected by members in the cluster.
Text is the most widely used means of exchanging or expressing knowledge and information in the real world. Recently, researches on structuring unstructured text data for text analysis have been actively performed. One of the most representative document embedding method (i.e. doc2Vec) generates a single vector for each document using the whole corpus included in the document. This causes a limitation that the document vector is affected by not only core words but also other miscellaneous words. Additionally, the traditional document embedding algorithms map each document into only one vector. Therefore, it is not easy to represent a complex document with interdisciplinary subjects into a single vector properly by the traditional approach. In this paper, we introduce a multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. After introducing the previous study on multi-vector document embedding, we visually analyze the effects of the multi-vector document embedding method. Firstly, the new method vectorizes the document using only predefined keywords instead of the entire words. Secondly, the new method decomposes various subjects included in the document and generates multiple vectors for each document. The experiments for about three thousands of academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the multi-vector based method, we ascertained that the information and knowledge in complex documents can be represented more accurately by eliminating the interference among subjects.
SGML(Standard Generalized Markup Language) is proper to view, modify and create new electronic document as documentation standard to create and interchange the structured document information. Accordingly, a study on efficient storage and management of very large structured SGML document information is need. This paper proposes design of data modeling based on GROVE(Graph Representation Of property ValuEs) defined in HyTime(Hypermedia Time-based Structuring Language) and describes design of SGML document storage management system.
This study investigates the effect of data fusion on the retrieval effectiveness by performing an experiment combining multiple representations of Web documents. The types of document representation combined in the study include content terms, links, anchor text, and URL. The experimental results showed that the data fusion technique combining document representation methods in Web environment did not bring any significant improvement in retrieval effectiveness.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.8
/
pp.2178-2198
/
2024
Graph-based document models have good capabilities to reveal inter-dependencies among unstructured text data. Natural language processing (NLP) systems that use such models as an intermediate representation have shown good performance. This paper proposes a novel fuzzy graph-based document model and to demonstrate its effectiveness by applying fuzzy logic tools for text summarization. The proposed system accepts a text document as input and identifies some of its sentence level features, namely sentence position, sentence length, numerical data, thematic word, proper noun, title feature, upper case feature, and sentence similarity. The fuzzy membership value of each feature is computed from the sentences. We also propose a novel algorithm to construct the fuzzy graph as an intermediate representation of the input document. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric is used to evaluate the model. The evaluation based on different quality metrics was also performed to verify the effectiveness of the model. The ANOVA test confirms the hypothesis that the proposed model improves the summarizer performance by 10% when compared with the state-of-the-art summarizers employing alternate intermediate representations for the input text.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.12
/
pp.4275-4291
/
2021
With the unprecedented growth of textual information on the Internet, an efficient automatic summarization system has become an urgent need. Recently, the neural network models based on the encoder-decoder with an attention mechanism have demonstrated powerful capabilities in the sentence summarization task. However, for paragraphs or longer document summarization, these models fail to mine the core information in the input text, which leads to information loss and repetitions. In this paper, we propose an abstractive document summarization method by applying guidance signals of key sentences to the encoder based on the hierarchical encoder-decoder architecture, denoted as KI-HABS. Specifically, we first train an extractor to extract key sentences in the input document by the hierarchical bidirectional GRU. Then, we encode the key sentences to the key information representation in the sentence level. Finally, we adopt key information representation guided selective encoding strategies to filter source information, which establishes a connection between the key sentences and the document. We use the CNN/Daily Mail and Gigaword datasets to evaluate our model. The experimental results demonstrate that our method generates more informative and concise summaries, achieving better performance than the competitive models.
Hye-In Jung;Hyun-Kyu Jeon;Ji-Yoon Kim;Chan-Hyeong Lee;Bong-Su Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.135-140
/
2022
최근 Document Retrieval을 비롯한 대부분의 자연어처리 분야에서는 BERT와 같이 self-attention을 기반으로 한 사전훈련 모델을 활용하여 SOTA(state-of-the-art)를 이루고 있다. 그러나 self-attention 메커니즘은 입력 텍스트 길이의 제곱에 비례하여 계산 복잡도가 증가하기 때문에, 해당 모델들은 선천적으로 입력 텍스트의 길이가 제한되는 한계점을 지닌다. Document Retrieval 분야에서는, 문서를 특정 토큰 길이 단위의 문단으로 나누어 각 문단의 유사 점수 또는 표현 벡터를 추출한 후 집계함으로서 길이 제한 문제를 해결하는 방법론이 하나의 주류를 이루고 있다. 그러나 논문, 특허와 같이 섹션 형식(초록, 결론 등)을 갖는 문서의 경우, 섹션 유형에 따라 고유한 정보 특성을 지닌다. 따라서 문서를 단순히 특정 길이의 문단으로 나누어 학습하는 PARADE와 같은 기존 방법론은 각 섹션이 지닌 특성을 반영하지 못한다는 한계점을 지닌다. 본 논문에서는 섹션 유형에 대한 정보를 포함하는 문단 표현을 학습한 후, 트랜스포머 인코더를 사용하여 집계함으로서, 결과적으로 섹션의 특징과 상호 정보를 학습할 수 있도록 하는 SERADE 모델을 제안하고자 한다. 실험 결과, PARADE-Transformer 모델과 비교하여 평균 3.8%의 성능 향상을 기록하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2002.11a
/
pp.363-367
/
2002
Represent of mathematical formula used within system handling document that is nonstructural in existent document editing system that is used in electron document processing that use computer is represented or processed by method that is nonstructural of image or text or etc. Such mathematical formular causes relative inconvenience to readablility and reusability of document and processing and exchange of document. Therefore, document editing system is required that can overcome such nonadvantage and apply MathML mathematical formula structure on efficiently structural document. Therefore, designed and implemented that document editing system for structural document creation of XML base that can mathematical formular editing of MathML base in this paper.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.4
no.2
/
pp.129-134
/
2004
XML is the new universal format for structured documents and data on the World Wide Web. As the Web becomes a major means of disseminating and sharing information and as the amount of XML data increases substantially, there are increased needs to manage and design such XML document in a novel yet efficient way. Moreover a demand of XML Schema(W3C XML Schema Spec.) that verifies XML document becomes increasing recently. However, XML Schema has a weak point for design because of its complication despite of various data and abundant expressiveness. Thus, it is difficult to design a complex document reflecting the usability, global and local facility and ability of expansion. This paper shows a simple way of modeling for XML document using a fundamental means for database design, the Entity-Relationship model. The design from the Entity-Relationship model to XML Schema can not be directly on account of discordance between the two models. So we present some algorithms to generate XML Schema from the Entity-Relationship model. The algorithms produce XML Schema codes using a hierarchical view representation. An important objective of this modeling is to preserve XML Schema's object-oriented concepts such as reusability, global and local ability. In addition to, implementation procedure and evaluation of the proposed design method are described.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.