• Title/Summary/Keyword: Docosahexaenoic acid

Search Result 378, Processing Time 0.034 seconds

Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: effects on performance, carcass characteristics and tissue fatty acid profile

  • Moran, Colm A.;Morlacchini, Mauro;Keegan, Jason D.;Fusconi, Giorgio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.712-720
    • /
    • 2018
  • Objective: The aim of this experiment was to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA) on pig performance, carcass traits, and the fatty acid composition of pork Longissimus lumborum (LL) and backfat. Methods: A total of 144 Pig Improvement Company (PIC)${\times}$Goland finishing pigs (72 females and 72 castrated males) of mean weight 117.1 (${\pm}13.1$) kg were blocked by sex and body weight and provided with 0% or 1% AURA in isonutritive and isocaloric diets. A total of 24 pens provided 12 replicates per treatment. Animals were weighed on day 0 and 28 with feed and water intake recorded per pen. After 31 days supplementation (28 days of study and 3 days until the slaughtering date) three animals per pen (n = 72) were slaughtered and the LL and backfat thickness, lean meat content and dressing percentage were recorded for the carcasses. The fatty acid (FA) profile of the LL and backfat was established by direct FA methyl ester synthesis. Results: No differences were observed for any performance parameters or carcass traits. Supplementation with AURA resulted in significant changes to the FA profiles of both the LL and backfat with male and female pigs responding differently to supplementation in terms of particular FAs. Overall, pork LL samples had significantly higher eicosapentaenoic acid (p<0.001) and DHA concentrations (p<0.001), and higher omega-3 (n-3) FAs (p<0.001), as well as an increased omega3:omega6 (n-3:n-6) ratio (p = 0.001). For backfat, supplementation resulted in significantly higher amounts of DHA (p<0.001) and n-3 FAs (p<0.001). Conclusion: These results indicate that dietary supplementation with 1% AURA over a 31 day period can increase the FA composition of pork LL and backfat, specifically the DHA, with no major impact on growth performance and carcass traits.

Isolation and Identification of DHA-Rich Marine Microorganism (Docosahexaenoic acid (DHA)를 다량 함유하는 해양미생물의 분리 및 동정)

  • Jeong, U-Cheol;Choi, Byeong-Dae;Choi, Jong-Duck;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Docosahexaenoic acid (DHA, 22:6n-3) and ecosapentaenoic acid (20:5n-3) have attracted increasing attention since the first epidemiological report on the importance of n-3 essential fatty acids. It is thought that DHA has important functions in brain and retinal tissues. Thraustochytrids, a group of marine protists, are capable of heterotrophic growth, and are potential omega-3 producers for industrial use, especially the members of the Schizochytrium and Thraustochytrium genera. The aims of this work were to isolate, identify and screen thraustochytrids from 17 different locations. Twenty-three isolates were screened for biomass, total fatty acid (TFA) and DHA content. Analysis of the fatty acid methyl esters revealed four distinct clusters biomass ranged from $8.68-9.36gL^{-1}$, and lipid and DHA contents ranged from $3.11-4.10gL^{-1}$ and $1.05-1.93gL^{-1}$ biomass, respectively. B-12 isolates were screened for biomass ($9.36gL^{-1}$), TFA ($4.10gL^{-1}$) and DHA (47.01%, w/w) content. C-6 isolates were also screened for biomass ($8.92gL^{-1}$), TFA ($3.30gL^{-1}$) and DHA (49.41%, w/w) content. The 18S rRNA gene sequencing results identified Schizochytrium mangrovei as B-12 and Crypthecodium cohnii as C-6.

Effects of Dietary Algal Docosahexaenoic Acid Oil Supplementation on Fatty Acid Deposition and Gene Expression in Laying Tsaiya Ducks

  • Cheng, C.H.;Ou, B.R.;Shen, T.F.;Ding, Shih-Torng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1047-1053
    • /
    • 2006
  • The current study was designed to determine the effects of dietary docosahexaenoic acid (DHA) on fatty acid deposition in egg yolk and various tissues of laying Tsaiya ducks, and on the mRNA concentrations of hepatic lipogenesis-related transcription factors. Thirty laying ducks were randomly assigned to three treatments with diets based on corn-soybean meal (ME: 2803 kcal/kg; CP: 17.1%; Ca: 3.4%) supplemented with 0% (control diet), 0.5% or 2% algal DHA oil. The DHA content in egg yolks of the ducks was elevated significantly (p<0.01) with the supplementation of dietary DHA. The DHA percentage of the total fatty acids in the egg yolk of laying ducks was 0.5%, 1.3% and 3.4% for 0%, 0.5% and 2% algal DHA oil treatments, respectively, for the $1^{st}$ week, and 0.5%, 1.5% and 3.3% for the $2^{nd}$ week. Therefore, algal DHA oil can be utilized by laying Tsaiya ducks to enhance the egg-yolk DHA content. The concentrations of triacylglycerol (TG) and cholesterol in plasma of laying Tsaiya ducks were not affected by dietary DHA treatments (p>0.05). The DHA concentration in plasma, liver, and skeletal muscle was increased with the addition of dietary algal DHA oil (p<0.05). The mRNA abundance of sterol regulatory element binding protein 1 (SREBP1) and SREBP2 in the livers of laying Tsaiya ducks was not affected by dietary DHA, suggesting that the expression of these transcription factors is tightly controlled and not sensitive to DHA treatments.

Fatty Acid Composition and Stability of Extracted Mackerel Muscle Oil and Oil-Polyethylene Glycol Particles Formed by Gas Saturated Solution Process

  • Haque, A.S.M. Tanbirul;Asaduzzaman, A.K.M.;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • The oil in mackerel muscle was extracted using an environment friendly solvent, supercritical carbon dioxide (SC-$CO_2$) at a semibatch flow extraction process and an n-hexane. The SC-$CO_2$ was maintained at a temperature of $45^{\circ}C$ under pressures ranging from 15 to 25 MPa. The flow rate of $CO_2$ (27 g/min) was constant during the entire 2 h extraction period. The fatty acid composition of the oil was analyzed using gas chromatography (GC). Significant concentrations of eicosapentaenoic acid (EPA) acid and docosahexaenoic acid (DHA) acid were present in the SC-$CO_2$ extracted oil. The oil extracted using SC-$CO_2$ exhibited increased stability compared with n-haxane extracted oil. Particles of mackerel oil together with the biodegradable polymer, polyethylene glycol (PEG) were formed using a gas saturated solution process (PGSS) with SC-$CO_2$ in a thermostatted stirred vessel. Different temperatures ($45-55^{\circ}C$), pressures (15-25 MPa) and a nozzle size $400{\mu}m$ were used for PGSS with a 1 h reaction time. The stability of mackerel oil in the particles did not changed significantly.

Dietary Reference Intake of n-3 polyunsaturated fatty acids for Koreans

  • Park, Yongsoon
    • Nutrition Research and Practice
    • /
    • v.16 no.sup1
    • /
    • pp.47-56
    • /
    • 2022
  • This paper examines the process and evidence used to create the Dietary Reference Intake (DRI) of alpha-linolenic acid (ALA) and eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) for Koreans. ALA (18:3n3) is an essential fatty acid, and EPA and DHA are known to have beneficial effects on cardiovascular disease risk and reduction of triglyceride levels. Various international organizations have suggested dietary recommendations for n-3 polyunsaturated fatty acids (PUFAs), including ALA, EPA, and DHA. A DRI for Koreans was established for the first time in 2020, specifically for the adequate intake (AI) of ALA and EPA + DHA. This recommendation was based on the average intake of ALA and EPA + DHA from the Korea National Health and Nutrition Examination Survey 2013-2017. For Korean infants, the AI of ALA and DHA was based on the fatty acid composition of maternal milk. Estimated average requirement and a tolerable upper intake level have not been set for n-3 PUFA due to insufficient evidence. In addition, the intake level of n-3 PUFA for prevention of chronic disease has also not been determined. Future studies and randomized controlled trials are required to establish the UL and to define the level for disease prevention.

A Kinetic Study of Fatty Acid Composition of Embryos, Oviductal and Uterine Fluids in the Rabbit

  • Yahia Khandoker, M.A.M.;Tsujii, H.;Karasawa, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.60-64
    • /
    • 1998
  • The different developmental stage embryos and oviductal and uterine fluids of rabbit were analyzed by gas chromatography. Myristic (C 14:0), palmitic (C 16:0), palmitoleic (C 16:1), stearic (C 18:0), oleic (C 18:1), linoleic (C 18:2), linolenic (C 18:3), arachidic (C 20:0), arachidonic (C 20:4), docosahexaenoic (C 22:6) and lignoceric (C 24:0) acids were the common fatty acid constituents with little exception. In most of the samples palmitic, oleic, linoleic and arachidonic acids were observed in high concentration. Moreover, linoleic, linolenic and arachidonic acids were the three poly-unsaturated fatty acids in both type sample except day-1 oviductal fluids. Similarly, in both day-1 and day-2 oviductal and uterine fluids myristic, palmitoleic, stearic, linolenic, arachidic and docosahexaenoic acids were in less composition or undetected.

In vivo control of phytopathogens by using omega-3 fatty acid docosahexaenoic acid (DHA) bioconverted by Pseudomonas aeruginosa PR3

  • Kang, Sun-Chul;Kim, Hak-Ryul;Shin, Seung-Yong;Bajpai, Vivek K.
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.497-499
    • /
    • 2005
  • Bioconverted hydroxy fatty acid, docosahexaenoic (bDHA) obtained from the microbial conversion by Pseudomonas aeruginosa PR3 was evaluated for its in vivo anti-fungal activity. bDHA showed great potential of anti-fungal activity against phytopathogenic fungi tested in this study. bDHA at the concentration of 500 ${\mu}g/ml.$ showed remarkable anti-fungal activity against all the fungus tested.

  • PDF

Effect of Docosahexaenoic Acid (DHA) on the Apoptosis of Human Endothelial ECV304 Cells (어유의 Docosahexaenoic Acid (DHA)가 인체혈관 내피세포(ECV304 Cells)에서의 Apoptosis에 미치는 영향)

  • Kim Young-Youn;Kim Hyo-Sook;Kim Mae-Ha;Jang Soo-Jeong;Lee Myoung-Sook
    • Journal of Nutrition and Health
    • /
    • v.39 no.4
    • /
    • pp.357-365
    • /
    • 2006
  • DHA, one of w-3 fatty acids, modulates cell growth or death though the changes of apoptotic signaling in human endothelial ECV304 cells. We investigated the effects of DHA on the changes of apoptotic signaling in human vascular endothelial ECV304 cells using lipid peroxidation (LPO) metabolites. LPO could be originated by dietary polyunsaturated fatty acids such as linoleic acid(LA), arachidonic acid(AA) and docosahexaenoic acid (DHA). DHA caused cell death of ECV304 cells compared to LA, AA or control as evidenced by changes in cell morphology and MTT assay. LPO levels was significantly elevated by 10 fold in DHA-treated ECV 304 cells and caspase-3 activity was increased by DHA corresponding to increasing incubation times compared to control. One of reasons of the cell death in DHA-treated ECV304 cells could be expected that caspase activity, marker for mitochondrial damages, might be triggered by the increasing LPO levels. Our results strongly indicated that DHA induced LPO production has an important role on apoptotic signaling pathway in ECV304 cells. LPO production in endothelial cells which was metabolized by oxidation of dietary PUFA, might be one of risk factors in the initial progression of atherosclerosis.

Deficiency or activation of peroxisome proliferator-activated receptor α reduces the tissue concentrations of endogenously synthesized docosahexaenoic acid in C57BL/6J mice

  • Hsiao, Wen-Ting;Su, Hui-Min;Su, Kuan-Pin;Chen, Szu-Han;Wu, Hai-Ping;You, Yi-Ling;Fu, Ru-Huei;Chao, Pei-Min
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.286-294
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of ${\alpha}$-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by $PPAR{\alpha}$. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among $PPAR{\alpha}$ homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate ($PPAR{\alpha}$ agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: $PPAR{\alpha}$ ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, $PPAR{\alpha}$ activation increased hepatic Acox, Fads1, Fads2, and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by $PPAR{\alpha}$. Either $PPAR{\alpha}$ deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.