• Title/Summary/Keyword: Docking analysis

Search Result 171, Processing Time 0.023 seconds

In-silico analysis of Lavender oil for Non-small cell lungcancer targeting ROS1

  • Bavya Chandrasekhar
    • Journal of Integrative Natural Science
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2023
  • Lavender oil is a prolonged history in ancient medicine and has a wide range of biological effects. The lavender essential oil has 50 different constituents that have different therapeutic significance. The compounds that are separated from essential oil can be used for the anticancer treatment of non-small cell lung cancer. ROS1 is one of the major targets for NSCLC. The compounds from lavender essential oil are separated through GC-MS. From 91 compounds the top compounds that are having high retention values are taken for Molecular docking study against the ROS1 target protein. The binding affinity and the docked pose for those compounds are studied. Later, the chemical reactivity of the compounds is studied by Density Functional Theory. The potent compounds must be validated by in vivo study.

Trend and Analysis of Protection Level Calculation Methods for Centimeter-Level Augmentation System in Maritime

  • Jaeyoung Song;TaeHyeong Jeon;Gimin Kim;Sang Hyun Park;Sul Gee Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.281-288
    • /
    • 2023
  • The International Maritime Organization (IMO) states that the recommended horizontal accuracy for coastal and offshore areas is 10 m, the Alert Limit (AL) is 25 m, the time to alert is 10 seconds, and the integrity risk (IR) is 10-5 per three hours. For operations requiring high accuracy, such as tugs and pushers, icebreakers, and automated docking, the IMO dictates that a high level of positioning accuracy of less than one meter and a protection level of 0.25 meters (for automated docking) to 2.5 meters should be achieved. In this paper, we analyze a method of calculating the user-side protection level of the centimeter-level precision Global Navigation Satellite System (GNSS) that is being studied to provide augmentation information for the precision Positioning, Navigation and Timing (PNT) service. In addition, we analyze standardized integrity forms based on RTCM SC-134 to propose an integrity information form and generate a centimeter-level precise PNT service plan.

In-silico and In-vitro based studies of Streptomyces peucetius CYP107N3 for oleic acid epoxidation

  • Bhattarai, Saurabh;Niraula, Narayan Prasad;Sohng, Jae Kyung;Oh, Tae-Jin
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.736-741
    • /
    • 2012
  • Certain members of the cytochromes P450 superfamily metabolize polyunsaturated long-chain fatty acids to several classes of oxygenated metabolites. An approach based on in silico analysis predicted that Streptomyces peucetius CYP107N3 might be a fatty acid-metabolizing enzyme, showing high homology with epoxidase enzymes. Homology modeling and docking studies of CYP107N3 showed that oleic acid can fit directly into the active site pocket of the double bond of oleic acid within optimum distance of $4.6{\AA}$ from the Fe. In order to confirm the epoxidation activity proposed by in silico analysis, a gene coding CYP107N3 was expressed in Escherichia coli. The purified CYP107N3 was shown to catalyze $C_9-C_{10}$ epoxidation of oleic acid in vitro to 9,10-epoxy stearic acid confirmed by ESI-MS, HPLC-MS and GC-MS spectral analysis.

In Silico Analysis and Molecular Docking Comparison of Mosquito Oviposition Pheromone and Beta-asarone on the Mosquito Odorant Binding Protein-1 (In Silico 분자결합 분석방법을 활용한 MOP와 베타아사론의 열대집모기 후각단백질 활성 부위에 대한 결합 친화도 비교 분석)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.195-200
    • /
    • 2018
  • Beta-asarone is the well-known active ingredient of Rhizoma acori graminei. In this study, we investigated and compared the binding affinity of mosquito oviposition pheromone (MOP; (5R,6S)-6-acetoxy-5-hexadecanolide) and beta-asarone on the A domain of the mosquito odorant binding protein 1 (CquiOBP1) by in silico computational docking studies. The three-dimensional crystallographic structure of CquiOBP1 was obtained from the PDB database (PDB ID: 3OGN). In silico computational auto-docking analysis was performed using PyRx, Autodock Vina, Discovery Studio Version 4.5, and the NX-QuickPharm option based on scoring functions. The beta-asarone showed optimum binding affinity (docking energy) with CquiOBP1 as -6.40 kcal/mol as compared to the MOP (-6.00 kcal/mol). Among the interacting amino acids (LEU76, LEU80, ALA88, MET89, HIS111, TRP114, and TYR122), tryptophan 114 in the CquiOBP1 active site significantly interacted with both MOP and beta-asarone. Amino acids substitution (mutation) from non-polar groups to the polar (or charged) groups of the CquiOBP1 dramatically changed the X, Y, Z grid position and binding affinity of both ligands. These results significantly indicated that beta-asarone could be a more potent ligand to the CquiOBP1 than MOP. Therefore, the extract of Rhizoma acori graminei or beta-asarone can be applied to the fields of insecticidal and repellant biomaterial development.

Effects of Dimaine, Diacid and Dintitro Derivatives on the Inhibition of Adenosine Deaminase; Experimental, Molecular Docking and QSAR Studies

  • Ajloo, Davood;Najafi, Leila;Saboury, Ali Akbar
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2523-2531
    • /
    • 2009
  • Effects of some diacid, diamine and dinitro aromatic compounds on the structure and activity of adenosine deaminase (ADA) were investigated by UV-Vis spectrophotometry in 50 mM phosphate buffer at pH = 7.5 and 27 ${^{\circ}C}$ and molecular docking studies. The results showed that all tested ligands are showing inhibition; five ligands are uncompetitive and other two ligands are mixed of competitive and noncompetetive inhibitors with majority of competitive behavior. For the later case analysis was done based on competitive inhibition. Diacids have larger size and higher inhibition constant ($K_I$) relative to others. A logical correlation between calculated free energy of binding and experimental values was obtained for un-competitive. Experimental and calculated data showed that competitive inhibitors are distributed near the active site of enzyme and form several cluster of ranks, whereas uncompetitive inhibitors bind to the enzyme-substrate complex and distributed far from the active site. Results of structure-activity relationship showed that, larger, more hydrophobe, less spherical and more aromatic ligands have higher inhibition constants.

Binding Mode Prediction of 5-Hydroxytryptamine 2C Receptor Ligands by Homology Modeling and Molecular Docking Analysis

  • Ahmed, Asif;Nagarajan, Shanthi;Doddareddy, Munikumar Reddy;Cho, Yong-Seo;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2008-2014
    • /
    • 2011
  • Serotonin or 5-hydroxytryptamine subtype 2C ($5-HT_{2C}$) receptor belongs to class A amine subfamily of G-protein-coupled receptor (GPCR) super family and its ligands has therapeutic promise as anti-depressant and -obesity agents. So far, bovine rhodopsin from class A opsin subfamily was the mostly used X-ray crystal template to model this receptor. Here, we explained homology model using beta 2 adrenergic receptor (${\beta}$2AR), the model was energetically minimized and validated by flexible ligand docking with known agonists and antagonists. In the active site Asp134, Ser138 of transmembrane 3 (TM3), Arg195 of extracellular loop 2 (ECL2) and Tyr358 of TM7 were found as important residues to interact with agonists. In addition to these, V208 of ECL2 and N351 of TM7 was found to interact with antagonists. Several conserved residues including Trp324, Phe327 and Phe328 were also found to contribute hydrophobic interaction. The predicted ligand binding mode is in good agreement with published mutagenesis and homology model data. This new template derived homology model can be useful for further virtual screening based lead identification.

Isolation and Structure Elucidation, Molecular Docking Studies of Screlotiumol from Soil Borne Fungi Screlotium rolfsii and their Reversal of Multidrug Resistance in Mouse Lymphoma Cells

  • Ahmad, Bashir;Rizwan, Muhammad;Rauf, Abdur;Raza, Muslim;Azam, Sadiq;Bashir, Shumaila;Molnar, Joseph;Csonka, Akos;Szabo, Diana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2083-2087
    • /
    • 2016
  • A new compound namely (13-(3,3-dihydroxypropyl)-1,6-dihydroxy-3,4-dihydro-1H-isochromen-8(5H)-one (1) was isolated from an ethyl acetate extract of the borne fungi Screlotium rolfsii. Its chemical structure was elucidated by spectroscopic analysis. Screlotiumol 1 were evaluated for their effects on the reversion of multidrug resistant (MDR) mediated by P-glycoprotein (P-gp) of the soil borne fungi. The multidrug resistant P-glycoprotein is a target for chemotherapeutic drugs in cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma which showed excellent MDR reversing effect in a dose dependent manner against mouse T-lymphoma cell line. Moreover, molecular docking studies of compound-1 also showed better results as compared with the standard. Therefore the preliminary results obtained from this study suggest that screlotiumol 1 could be used as a potential agent for the treatment of cancer.

Identification of Suitable Natural Inhibitor against Influenza A (H1N1) Neuraminidase Protein by Molecular Docking

  • Sahoo, Maheswata;Jena, Lingaraja;Rath, Surya Narayan;Kumar, Satish
    • Genomics & Informatics
    • /
    • v.14 no.3
    • /
    • pp.96-103
    • /
    • 2016
  • The influenza A (H1N1) virus, also known as swine flu is a leading cause of morbidity and mortality since 2009. There is a need to explore novel anti-viral drugs for overcoming the epidemics. Traditionally, different plant extracts of garlic, ginger, kalmegh, ajwain, green tea, turmeric, menthe, tulsi, etc. have been used as hopeful source of prevention and treatment of human influenza. The H1N1 virus contains an important glycoprotein, known as neuraminidase (NA) that is mainly responsible for initiation of viral infection and is essential for the life cycle of H1N1. It is responsible for sialic acid cleavage from glycans of the infected cell. We employed amino acid sequence of H1N1 NA to predict the tertiary structure using Phyre2 server and validated using ProCheck, ProSA, ProQ, and ERRAT server. Further, the modelled structure was docked with thirteen natural compounds of plant origin using AutoDock4.2. Most of the natural compounds showed effective inhibitory activity against H1N1 NA in binding condition. This study also highlights interaction of these natural inhibitors with amino residues of NA protein. Furthermore, among 13 natural compounds, theaflavin, found in green tea, was observed to inhibit H1N1 NA proteins strongly supported by lowest docking energy. Hence, it may be of interest to consider theaflavin for further in vitro and in vivo evaluation.

Molecular Docking and Kinetic Studies of the A226N Mutant of Deinococcus geothermalis Amylosucrase with Enhanced Transglucosylation Activity

  • Hong, Seungpyo;Siziya, Inonge Noni;Seo, Myung-Ji;Park, Cheon-Seok;Seo, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1436-1442
    • /
    • 2020
  • Amylosucrase (ASase, E.C. 2.4.1.4) is capable of efficient glucose transfer from sucrose, acting as the sole donor molecule, to various functional acceptor compounds, such as polyphenols and flavonoids. An ASase variant from Deinococcus geothermalis, in which the 226th alanine is replaced with asparagine (DgAS-A226N), shows increased polymerization activity due to changes in the flexibility of the loop near the active site. In this study, we further investigated how the mutation modulates the enzymatic activity of DgAS using molecular dynamics and docking simulations to evaluate interactions between the enzyme and phenolic compounds. The computational analysis revealed that the A226N mutation could induce and stabilize structural changes near the substrate-binding site to increase glucose transfer efficiency to phenolic compounds. Kinetic parameters of DgAS-A226N and WT DgAS were determined with sucrose and 4-methylumbelliferone (MU) as donor and acceptor molecules, respectively. The kcat/Km value of DgAS-A226N with MU (6.352 mM-1min-1) was significantly higher than that of DgAS (5.296 mM-1min-1). The enzymatic activity was tested with a small phenolic compound, hydroquinone, and there was a 1.4-fold increase in α-arbutin production. From the results of the study, it was concluded that DgAS-A226N has improved acceptor specificity toward small phenolic compounds by way of stabilizing the active conformation of these compounds.

Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells

  • Song, Heewon;Park, Joonwoo;Choi, KeunOh;Lee, Jeonggeun;Chen, Jie;Park, Hyun-Ju;Yu, Byeung-Il;Iida, Mitsuru;Rhyu, Mee-Ra;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.319-325
    • /
    • 2019
  • Background: Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$. Methods: The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the $PPAR{\gamma}$ structure using Surflex-Dock in Sybyl-X 2.1.1. Results: $PPAR{\gamma}$ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the $PPAR{\gamma}-specific$ inhibitor, T0070907. The $PPAR{\gamma}$ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of $PPAR{\gamma}$. Conclusions: Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on $PPAR{\gamma}$ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of $PPAR{\gamma}$ suggests that the compound binds to $PPAR{\gamma}$ in a position similar to that of known agonists.