• Title/Summary/Keyword: Docking analysis

Search Result 168, Processing Time 0.033 seconds

Flavonoids as Novel Therapeutic Agents Against Chikungunya Virus Capsid Protein: A Molecular Docking Approach

  • E. Vadivel;Gundeep Ekka;J. Fermin Angelo Selvin
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.226-235
    • /
    • 2023
  • Chikungunya fever has a high morbidity rate in humans and is caused by chikungunya virus. There are no treatments available until now for this particular viral disease. The present study was carried out by selecting 19 flavonoids, which are available naturally in fruits, vegetables, tea, red wine and medicinal plants. The molecular docking of selected 19 flavonoids was carried out against the Chikungunya virus capsid protein using the Autodock4.2 software. Binding affinity analysis based on the Intermolecular interactions such as Hydrogen bonding and hydrophobic interactions and drug-likeness properties for all the 19 flavonoids have been carried out and it is found that the top four molecules are Chrysin, Fisetin, Naringenin and Biochanin A as they fit to the chikungunya protein and have binding energy of -8.09, -8.01, -7.6, and 7.3 kcal/mol respectively. This result opens up the possibility of applying these compounds in the inhibition of chikungunya viral protein.

Pharmacophore Modelling, Quantitative Structure Activity Relationship (QSAR) and Docking Studies of Pyrimidine Analogs as Potential Calcium Channel Blockers

  • Choudhari, Prafulla B.;Bhatia, Manish S.;Jadhav, Swapnil D.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.99-103
    • /
    • 2013
  • The present communication deals with the Pharmacophore modeling, 3D QSAR and docking analysis on series of Pyrimidine derivatives as potential calcium channel blockers. The computational studies showed hydrogen bond donor, hydrogen bond acceptor, and hydrophobic group are important features for calcium channel blocking activity. These studies showed that Pyrimidine scaffold can be utilized for designing of novel calcium channels blockers for CVS disorders.

Underwater Guidance System for AUV using Optical Sensor Array (광센서 배열을 이용한 무인잠수정의 종단유도장치 시스템)

  • Son, Hyeon-joong;Choi, Hyeung-sik;Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2019
  • In this paper, a new study was performed on the docking of AUV to docking station using light and light sensor system under the water. For this, a guiding system for AUV loading sensor system composed of lense, light sensor, signal processor, and processor and docking system with LED are proposed. An analysis on light sensor system and light-collecting lense to obtain accurate relative angle and measurement accuracy was performed. To prove this, the system was built and a basic experiment was performed. Finally, the feasibility of the developed docking system was verified the test in the water tank.

Structural Analysis of Recombinant Human Preproinsulins by Structure Prediction, Molecular Dynamics, and Protein-Protein Docking

  • Jung, Sung Hun;Kim, Chang-Kyu;Lee, Gunhee;Yoon, Jonghwan;Lee, Minho
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.142-146
    • /
    • 2017
  • More effective production of human insulin is important, because insulin is the main medication that is used to treat multiple types of diabetes and because many people are suffering from diabetes. The current system of insulin production is based on recombinant DNA technology, and the expression vector is composed of a preproinsulin sequence that is a fused form of an artificial leader peptide and the native proinsulin. It has been reported that the sequence of the leader peptide affects the production of insulin. To analyze how the leader peptide affects the maturation of insulin structurally, we adapted several in silico simulations using 13 artificial proinsulin sequences. Three-dimensional structures of models were predicted and compared. Although their sequences had few differences, the predicted structures were somewhat different. The structures were refined by molecular dynamics simulation, and the energy of each model was estimated. Then, protein-protein docking between the models and trypsin was carried out to compare how efficiently the protease could access the cleavage sites of the proinsulin models. The results showed some concordance with experimental results that have been reported; so, we expect our analysis will be used to predict the optimized sequence of artificial proinsulin for more effective production.

A Study on Development of a Marine Docking System for Repair of a Small Coast-Boat (연안 소형선박 수리용 해상 상가시스템 개발)

  • Park, Chung-Hwan;Jang, Dong-Won;Yang, Hyang-Kweon;Jin, Jong-Ryung
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.78-83
    • /
    • 2008
  • In recent years, small boats used for marine leisure have been steadily increasing because of the increase in national income and the desire for marine leisure. But the repair of such small boats in dry dock has pointed out many faults in small FRP-shipbuilding in terms if workspace and manpower. Lifting a boat from the water to land is done with a crane or by hand using a sling around the bottom of the boat. But dry dock work is limited by the scale of the boat, which corresponds to the crane capacity, with carelessness making it possible to capsize a boat and endanger life. The purpose of this study was the development of a marine docking system that would improve economical efficiency and safety, for which we carried out concept design, model tests, structural analysis, etc.

Synthesis, Docking Study and In-vitro Evaluation of Anti-Tuberculosis Activity of Tri Substituted Imidazoles Containing Quinoline Moiety

  • Sahana, S.;Vijayakumar, G.R.;Sivakumar, R.;Sriram, D.;Saiprasad, D.V.
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.194-201
    • /
    • 2022
  • A simple, efficient, and cost-effective method has been employed for the synthesis of 2,4,5-trisubstituted imidazole derivatives (3a-j) containing quinoline substituent at 2nd position. Title compounds were obtained by multicomponent reaction (MCR), involving aryl substituted 1,2-diketone, quinoline carbaldehyde and ammonium acetate in the presence of acetic acid solvent under mild reaction conditions. The newly synthesized quinoline containing imidazole derivatives were confirmed through FT-IR, 1H-NMR, 13C-NMR and mass spectral analysis. In-vitro microplate alamar blue assay (MABA) to determine the MIC (minimum inhibitory concentration) values against Mycobacterium tuberculosis H37Rv was performed for the synthesized compounds. The synthesized compounds exhibited activity against Mycobacterium tuberculosis and among which compounds, 3d, 3f and 3i showed good activity. The highest activity was showed with compound 3i. The anti-mycobacterial activity results are well correlated with the computational molecular docking analysis, which was performed for the synthesized compounds prior to the evaluation of the activity.

Toward the Virtual Screening of α-Glucosidase Inhibitors with the Homology-Modeled Protein Structure

  • Park, Jung-Hum;Ko, Sung-Min;Park, Hwang-Seo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.921-927
    • /
    • 2008
  • Discovery of $\alpha$-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of diabetes and the other carbohydrate mediated diseases. As a method for the discovery of new novel inhibitors of $\alpha$-glucosidase, we have addressed the performance of the computer-aided drug design protocol involving the homology modeling of $\alpha$-glucosidase and the structure-based virtual screening with the two docking tools: FlexX and the automated and improved AutoDock implementing the effects of ligand solvation in the scoring function. The homology modeling of $\alpha$-glucosidase from baker’s yeast provides a high-quality 3-D structure enabling the structure-based inhibitor design. Of the two docking programs under consideration, AutoDock is found to be more accurate than FlexX in terms of scoring putative ligands to the extent of 5-fold enhancement of hit rate in database screening when 1% of database coverage is used as a cutoff. A detailed binding mode analysis of the known inhibitors shows that they can be stabilized in the active site of $\alpha$- glucosidase through the simultaneous establishment of the multiple hydrogen bond and hydrophobic interactions. The present study demonstrates the usefulness of the automated AutoDock program with the improved scoring function as a docking tool for virtual screening of new $\alpha$-glucosidase inhibitors as well as for binding mode analysis to elucidate the activities of known inhibitors.

Analysis of Amount of Energy Loss for a Dock System in the Cold Distribution Center (냉동 물류 창고 내 도크시스템을 통한 에너지 손실량 분석)

  • Yang, Sungjune;Kim, Youngjoo;Hur, Jun;Kim, Teasung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.419-428
    • /
    • 2017
  • In this study, energy loss due to ventilation load in the dock system was analyzed through simulation. Also, flow generated in the dock system of the warehouse was measured using manufactured measuring devices. Numerical simulation was conducted by simulating the most common picking tasks by examining the actual working environment. Incompressible and unsteady turbulent flows were assumed, and the turbulence model was the k-e standard model. Proper grid was selected through grid dependency test. Measurement was conducted using Honeywell and Vaisala sensors, and flow and temperature inside the warehouse were measured and compared with simulation results to validate simulation. When comparing amount of loss occurring in two hours and amount of loss occurring in 15 minutes, docking time of the former was eight times longer but energy loss was 3.8 times lower. Ventilation load occurring during the initial period after opening docking system accounted for a large proportion of total ventilation load. Also, comparing the load when the dock was closed and the load when the truck was parked, ventilation load was significantly higher than load due to heat conduction from the wall. Therefore, in improving the docking system, it is effective to reduce the gap by improving compatibility of the docking system and truck, rather than wall material.

Molecular docking of bioactive compounds derived from Moringa oleifera with p53 protein in the apoptosis pathway of oral squamous cell carcinoma

  • Rath, Sonali;Jagadeb, Manaswini;Bhuyan, Ruchi
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.46.1-46.11
    • /
    • 2021
  • Moringa oleifera is nowadays raising as the most preferred medicinal plant, as every part of the moringa plant has potential bioactive compounds which can be used as herbal medicines. Some bioactive compounds of M. oleifera possess potential anti-cancer properties which interact with the apoptosis protein p53 in cancer cell lines of oral squamous cell carcinoma. This research work focuses on the interaction among the selected bioactive compounds derived from M. oleifera with targeted apoptosis protein p53 from the apoptosis pathway to check whether the bioactive compound will induce apoptosis after the mutation in p53. To check the toxicity and drug-likeness of the selected bioactive compound derived from M. oleifera based on Lipinski's Rule of Five. Detailed analysis of the 3D structure of apoptosis protein p53. To analyze protein's active site by CASTp 3.0 server. Molecular docking and binding affinity were analyzed between protein p53 with selected bioactive compounds in order to find the most potential inhibitor against the target. This study shows the docking between the potential bioactive compounds with targeted apoptosis protein p53. Quercetin was the most potential bioactive compound whereas kaempferol shows poor affinity towards the targeted p53 protein in the apoptosis pathway. Thus, the objective of this research can provide an insight prediction towards M. oleifera derived bioactive compounds and target apoptosis protein p53 in the structural analysis for compound isolation and in-vivo experiments on the cancer cell line.

Molecular modeling of COX-2 inhibitors: 3D-QSAR and docking studies

  • Kim, Hye-Jung;Chae, Chong-Hak;Yoo, Sung-Eun;Yi, Kyu-Yang;Park, Kyung-Lae
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.65.2-65.2
    • /
    • 2003
  • 88 selective COX-2 inhibitors belonging to three chemical classes (triaryl rings, diaryl cycloalkanopyrazoles, and diphenyl hydrazides) were studied using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Partial least squares analysis produced statistically significant models with q values of 0.84 and 0.79 for CoMFA and CoMSIA, respectively. The key spatial properties were detected by careful analysis of the isocontour maps. The binding energies calculated from flexible docking correlated with inhibitory activities by the least-squares fit method. (omitted)

  • PDF