• Title/Summary/Keyword: Do Consumption Rate

Search Result 157, Processing Time 0.028 seconds

Biomass Changes of a Human-influenced Pine Forest and Forest Management in Agricultural Landscape System (인간간섭하의 소나무림의 현존량변화와 농촌경관시스템내에서의 산림관리)

  • Hong, Sun-Kee;Nobukazu Nakagoshi
    • The Korean Journal of Ecology
    • /
    • v.19 no.4
    • /
    • pp.305-320
    • /
    • 1996
  • It is necessary to obtain information about the productivity of the human-influenced forest and to understand the consumption of biomass resources in secondary forest in order to examine the resource flux by human activity in rural landscape. Thus the aims of this study were to elucidate the biomass and their use of secondary Pinus densiflora forests and to discuss sustainable utilization of secondary forests in rural landscape system. This study was carried out in Yanghwa-ri, Kongjugun, Chungcheongnam-do, central Korea. The changes of growth rate and aboveground biomass of a pine forest for 2 years were analyzed to understand forest management regimes in rural pine forests. Through allometric equations deduced from 25 sample trees, biomass was estimated. The biomass increase of pine forest was approximately 16.36 t/ha/yr in the unexploited stand and 12.24 t/ha/yr in the exploited stand. These were nearly equal to those of natural pine forests in central Korea. This result proved that human-influenced pine forest in rural landscape as well as the natural one has high potentiality to provide forest products. Making graveyard in forest-land was the important disturbance and land-use which currently occurring in rural landscape in the study area. Finally, we presented some forest management for stutainable and positive uses of secondary forests as one of the local energy resources in terms of the holistic landscape-ecological view.

  • PDF

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

Water and Sediment Characteristics in the Shellfish Farms of the Western Part of Jinhae Bay

  • Choi Hee Gu;Lee Won Chan;Kim Pyoung Joong;Lee Pil Yong
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.159-167
    • /
    • 1998
  • The environmental characteristics in shellfish farms were investigated in the western part of Jinhae Bay, 1996. During summer, anoxia and high nutrient concentrations were found in the bottom waters of shellfish farms. The concentrations of particulate organic species in seawaters were enriched, showing an average 57.44 uM for POC, an average 5.45 uM for PON, and an average 0.42uM for PP. The sediments environment in the farms was very polluted. The concentrations of COD and AVS were more than 20 mg/g.dry and 0.5 mg/g.dry, respectively. The total sedimentation rate was high as an average $7.81g/m^2/day$ with organic matter contents of $26\%$. Oxygen consumption rate was similar to polluted area as an average of $439mg/m^2/day$. Nutrient release rates were an average of $8.25mg/m^2/day$ for nitrogen and an average of $1.38mg/m^2/day$ for phosphorous. The cluster analysis through environmental data in summer indicated that DO, nutrient in the bottom water, and AVS in the sediment were important factors to characterize the polluted environmental site.

  • PDF

Predicting the Pre-Harvest Sprouting Rate in Rice Using Machine Learning (기계학습을 이용한 벼 수발아율 예측)

  • Ban, Ho-Young;Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myong-Goo;Lee, Chung-Keun;Lee, Ji-U;Lee, Chae Young;Yun, Yeo-Tae;Han, Chae Min;Shin, Seo Ho;Lee, Seong-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.239-249
    • /
    • 2020
  • Rice flour varieties have been developed to replace wheat, and consumption of rice flour has been encouraged. damage related to pre-harvest sprouting was occurring due to a weather disaster during the ripening period. Thus, it is necessary to develop pre-harvest sprouting rate prediction system to minimize damage for pre-harvest sprouting. Rice cultivation experiments from 20 17 to 20 19 were conducted with three rice flour varieties at six regions in Gangwon-do, Chungcheongbuk-do, and Gyeongsangbuk-do. Survey components were the heading date and pre-harvest sprouting at the harvest date. The weather data were collected daily mean temperature, relative humidity, and rainfall using Automated Synoptic Observing System (ASOS) with the same region name. Gradient Boosting Machine (GBM) which is a machine learning model, was used to predict the pre-harvest sprouting rate, and the training input variables were mean temperature, relative humidity, and total rainfall. Also, the experiment for the period from days after the heading date (DAH) to the subsequent period (DA2H) was conducted to establish the period related to pre-harvest sprouting. The data were divided into training-set and vali-set for calibration of period related to pre-harvest sprouting, and test-set for validation. The result for training-set and vali-set showed the highest score for a period of 22 DAH and 24 DA2H. The result for test-set tended to overpredict pre-harvest sprouting rate on a section smaller than 3.0 %. However, the result showed a high prediction performance (R2=0.76). Therefore, it is expected that the pre-harvest sprouting rate could be able to easily predict with weather components for a specific period using machine learning.

Performance of Rotating Biological Contactor under Various Hydraulic Residence Time on thle Removal of Total Ammonia Nitrogen and COD in a Simnulated Water Recirculating System (모의 순환여과식 실험장치에서 회전원판반응기 (RBC)에 의한 순환수처리)

  • SUH Kuen-Hack;KIM Byong-Jin;LIM Sung-Il;CHO Jin-Koo;KIM Yong-Ha;OH Chang-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.180-185
    • /
    • 1999
  • Rotating Biological Contactor (RBC) was tested for the treatment of artificial rearing water in n simulated aquaculture system. Performance of RBC on the removal of TAN and COD was evaluated by controlling hydraulic residence time (HRT). As HRT of RBC was increased, TAN removal rate ana removal efficiency of RBC and TAN concentration of rearing water were increased, but COD removal rate was decreased. Total alkalinity consumption rate was increased by increasing HRT of RBC. Ratio between total alkalinity consumption rate and TAN removal rate was 7.73. HRT for maintaining lowest TAN and COD concentration of artificial rearing water was 14,6 minutes and at that condition TAN and COD concentration of the water was 1.28 and $5.59 g/m^3$, respectively.

  • PDF

Time Synchronization Algorithm using the Clock Drift Rate and Reference Signals Between Two Sensor Nodes (클럭 표류율과 기준 신호를 이용한 두 센서 노드간 시간 동기 알고리즘)

  • Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Time synchronization algorithm in wireless sensor networks is essential to various applications such as object tracking, data encryption, duplicate detection, and precise TDMA scheduling. This paper describes CDRS that is a time synchronization algorithm using the Clock Drift rate and Reference Signals between two sensor nodes. CDRS is composed of two steps. At first step, the time correction is calculated using offset and the clock drift rate between the two nodes based on the LTS method. Two nodes become a synchronized state and the time variance can be compensated by the clock drift rate. At second step, the synchronization node transmits reference signals periodically. This reference signals are used to calculate the time difference between nodes. When this value exceeds the maximum error tolerance, the first step is performed again for resynchronization. The simulation results on the performance analysis show that the time accuracy of the proposed algorithm is improved, and the energy consumption is reduced 2.5 times compared to the time synchronization algorithm with only LTS, because CDRS reduces the number of message about 50% compared to LTS and reference signals do not use the data space for timestamp.

Metabolic Rate and Thermolabile Properties of Ognev's Great Tube-nosed Bat Murina leucogaster in Response to Variable Ambient Temperature

  • Choe, In-Ho;O, Yong-Geun;Jeong, No-Pal;Gang, Byeong-Ju;Sin, Hyeong-Cheol
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.49-53
    • /
    • 1998
  • The winter-resident Korean bats, Murina leucogaster ognevi, show a circadian cycle of thermoregulation and locomotion in summer, as do other bat species in temperate regions. They are most active between dusk and dawn with body temperature (Tb) of 35-4OC, and are usually torpid in their roost sites for the rest of day with their Tb close to ambient temperature (Ta) of around 15C. The present study was conducted to determine thermogenic and thermolabile properties of the heterothermic bats that would influence their daily feeding activities and ultimately, their energy conservation strategy. Testing on active male Murina, resting metabolic rate (RMR, gauged by oxygen consumption rate) at the lower limit of thermoneutral zone (31C) was 2.0 L kq-1 h-1. The regression slope of RMR below the thermoneutral zone (an index of metabolic thermal sensitivity) was -0.38 L $kg^{-l} h^{-1} C^{-1}$. The metabolic rate at the roost Ta (15C) was 4.5 times the lowest RMR in the active state but becomes nearly zero in the torpid state. This implies that by being torpid during daytime (between dawn and dusk), the individual bats would save about 4.7 kcal each day in mid-summer. Interspecific comparisons of thermal metabolic response over a mass scale suggest that the smaller bats show a relatively higher metabolic rate in thermoneutral zone and a greater thermal sensitivity of metabolism, which follows the general principle seen in homeothermic metabolism. Thermolabile features in metabolic responses seem to be fairly common for these bats in conditions other than a fully active state. Types of thermolabile responses and their energetic significance are discussed.

  • PDF

Factors Affecting Microbial Respiration (MR) by Rapid Oxygen Uptake Rate (OUR) Monitoring (급속 OUR 모니터링을 이용한 Microbial Respiration (MR) 영향인자 평가)

  • Park, Se-Yong;Mo, Kyung;Kim, Youn-Kwon;Kim, Moon-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.630-635
    • /
    • 2011
  • As this study was estimation of factors of rapid OUR (Oxygen Uptake Rate) monitoring method. Experiment for estimating factors of optimal microorganism activity was carried out in this study. In addition to comparison and estimation of SCOD variation by OUR variation using real wastewaters. In consequence OUR value was highest when F/M ratio, pH and temperature were 0.03~0.05, 6.0~8.5 and $20{\sim}30^{\circ}C$ respectively. Oxygen consumption by nitrification was incomplete. OUR variation of SCOD was recognizable difference of degradable rate at before and after of inflection point OUR. This study used an experimental method for real time prediction of the influent of the sewage treatment plant for optimal operation is expected to be able to do.

A Study on the Review Method of Zero Energy Independence Rate in Building Applied with BIM-based BIPV (BIM기반 BIPV 적용 건축물의 제로에너지 자립률 검토 방법에 관한 연구)

  • Choi, Kyu-Hyeok;Jeon, Hyun-Woo;Park, Kyung-Do
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.277-287
    • /
    • 2022
  • ZEB is a building that increases the energy independence of the building itself, and new and renewable elements that can produce energy are essential, and BIPV is the most notable technology. In ZEB's design, BIPV should be planned early in the design, but BIPV plans are insufficient in the early stages. Therefore, this study derived elements for theoretical consideration of BIM and ZEB and analysis of ZEB independence rate based on BIM, a convergence design technology, and analyzed BIPV energy production and building energy consumption. Finally, by calculating the energy independence rate and reviewing the rating criteria in the project model, a basic research method for calculating the energy independence rate of ZEB at the beginning of the design was presented. Through this, it is expected that design productivity can be improved by supporting the decision of ZEB subjects.

The Status of Dietary Supplements Intake in Korean Preschool Children: Data from the Korea National Health and Nutrition Examination Survey 2010-2012

  • Kang, Dong Soo;Lee, Kun Song
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.17 no.3
    • /
    • pp.178-185
    • /
    • 2014
  • Purpose: The use of dietary supplements (DS) has increased in most nations. We investigated the amount of DS intake in the Korean population by analyzing a national survey, to support the preparation of a national institutional strategy regarding DS intake and marketing. Methods: The data of the fifth Korea National Health and Nutrition Examination Survey (a year between 2010 and 2012) were investigated, analyzing the rate of DS intake, and the characteristics of the intake group and non-intake group in Korean preschool children. Results: The intake rate of DS was 49.0-54.2% (1,313,874-1,491,240) and 19.6-30.3% (250,603-421,922) in children from 1 to 6 years old and in those less than 1 year, respectively, from 2010 to 2012. The highest intake rate was observed in the age group of five. The mean age was significantly higher in the DS intake group than in the non-intake group. Intake of essential nutrients, minerals, and vitamins were also higher in the DS intake group. The level of family income was significantly associated with the intake rate (p<0.001). In children less than 1 year, probiotics accounted for the highest intake of DS. Conclusion: Korean preschool children have high consumption of DS. Therefore, problems may arise from the waste of money purchasing unnecessary DS, and from the overuse of DS in preschoolers who do not require DS intake. We hope these results can be used to produce an appropriate national institutional strategy regarding DS intake and marketing.