• 제목/요약/키워드: Dnmt1

검색결과 51건 처리시간 0.018초

Suppression of DNMTs Accelerates the In Vitro Erythropoietic Differentiation of Human $CD34^+$ Progenitor Cells

  • Kim, Seok-Ho;Yang, Hee-Young;Jeong, Dong-Kee;Lee, Sang-Ryeul;Ryoo, Zae-Young;Lee, Tae-Hoon
    • Reproductive and Developmental Biology
    • /
    • 제31권4호
    • /
    • pp.241-248
    • /
    • 2007
  • Epigenetic modification dependent DNA methyltransferases (DNMTs) play an important role in tissue- and stage-specific gene regulation and normal mammalian development. In this study, we show that DNMTs are expressed at different levels during hematopoietic stem cell (HSC) differentiation to proerythrocytes. DNMT1, DNMT3A, and DNMT3B were highly expressed at day 7 after differentiation. We used specific siRNA as a tool to probe the relationship between the expression of DNMTs and erythropoietic differentiation. When introduced siRNA of DMNT1 and DMNT3b in human $CD34^+$ cells, these more differentiated into erythrocytes. This was confirmed by glycophorin A (GPA) positive cell analysis and globin gene expression. $GPA^+$ cells increased up to $20{\sim}30%$, and ${\gamma}$- and ${\epsilon}$-globin genes increased in siRNA transfected cells. Therefore, our data suggest that suppression of DNA methylation can affect positively differentiation of HSC and may contribute to expression of erythrocyte lineage genes including GPA and globins.

Hepatitis B Virus X Protein Stimulates Virus Replication Via DNA Methylation of the C-1619 in Covalently Closed Circular DNA

  • Lee, Hyehyeon;Jeong, Hyerin;Lee, Sun Young;Kim, Soo Shin;Jang, Kyung Lib
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.67-78
    • /
    • 2019
  • Methylation of HBV cccDNA has been detected in vivo and in vitro; however, the mechanism and its effects on HBV replication remain unclear. HBx derived from a 1.2-mer HBV replicon upregulated protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), 3a, and 3b, resulting in methylation of the negative regulatory region (NRE) in cccDNA, while none of these effects were observed with an HBx-null mutant. The HBx-positive HBV cccDNA expressed higher levels of HBc and produced about 4-fold higher levels of HBV particles than those from the HBx-null counterpart. For these effects, HBx interrupted the action of NRE binding protein via methylation of the C-1619 within NRE, resulting in activation of the core promoter. Treatment with 5-Aza-2′dC or DNMT1 knock-down drastically impaired the ability of HBx to activate the core promoter and stimulate HBV replication in 1.2-mer HBV replicon and in vitro infection systems, indicating the positive role of HBx-mediated cccDNA methylation in HBV replication.

Effects of Somatic Mutations Are Associated with SNP in the Progression of Individual Acute Myeloid Leukemia Patient: The Two-Hit Theory Explains Inherited Predisposition to Pathogenesis

  • Park, Soyoung;Koh, Youngil;Yoon, Sung-Soo
    • Genomics & Informatics
    • /
    • 제11권1호
    • /
    • pp.34-37
    • /
    • 2013
  • This study evaluated the effects of somatic mutations and single nucleotide polymorphisms (SNPs) on disease progression and tried to verify the two-hit theory in cancer pathogenesis. To address this issue, SNP analysis was performed using the UCSC hg19 program in 10 acute myeloid leukemia patients (samples, G1 to G10), and somatic mutations were identified in the same tumor sample using SomaticSniper and VarScan2. SNPs in KRAS were detected in 4 out of 10 different individuals, and those of DNMT3A were detected in 5 of the same patient cohort. In 2 patients, both KRAS and DNMT3A were detected simultaneously. A somatic mutation in IDH2 was detected in these 2 patients. One of the patients had an additional mutation in FLT3, while the other patient had an NPM1 mutation. The patient with an FLT3 mutation relapsed shortly after attaining remission, while the other patient with the NPM1 mutation did not suffer a relapse. Our results indicate that SNPs with additional somatic mutations affect the prognosis of AML.

Ginsenoside Rg1 Epigenetically Modulates Smad7 Expression in Liver Fibrosis via MicroRNA-152

  • Rongrong Zhang ;Xinmiao Li ;Yuxiang Gao ;Qiqi Tao;Zhichao Lang;Yating Zhan;Chunxue Li;Jianjian Zheng
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.534-542
    • /
    • 2023
  • Background: Ginsenoside Rg1, a bioactive component of Ginseng, has demonstrated anti-inflammatory, anti-cancer, and hepatoprotective effects. It is known that the epithelial-mesenchymal transition (EMT) plays a key role in the activation of hepatic stellate cells (HSCs). Recently, Rg1 has been shown to reverse liver fibrosis by suppressing EMT, although the mechanism of Rg1-mediated anti-fibrosis effects is still largely unclear. Interestingly, Smad7, a negative regulator of the transforming growth factor β (TGF-β) pathway, is often methylated during liver fibrosis. Whether Smad7 methylation plays a vital role in the effects of Rg1 on liver fibrosis remains unclear. Methods: Anti-fibrosis effects were examined after Rg1 processing in vivo and in vitro. Smad7 expression, Smad7 methylation, and microRNA-152 (miR-152) levels were also analyzed. Results: Rg1 significantly reduced the liver fibrosis caused by carbon tetrachloride, and reduced collagen deposition was also observed. Rg1 also contributed to the suppression of collagenation and HSC reproduction in vitro. Rg1 caused EMT inactivation, reducing Desmin and increasing E-cadherin levels. Notably, the effect of Rg1 on HSC activation was mediated by the TGF-β pathway. Rg1 induced Smad7 expression and demethylation. The over-expression of DNA methyltransferase 1 (DNMT1) blocked the Rg1-mediated inhibition of Smad7 methylation, and miR-152 targeted DNMT1. Further experiments suggested that Rg1 repressed Smad7 methylation via miR-152-mediated DNMT1 inhibition. MiR-152 inhibition reversed the Rg1-induced promotion of Smad7 expression and demethylation. In addition, miR-152 silencing led to the inhibition of the Rg1-induced EMT inactivation. Conclusion: Rg1 inhibits HSC activation by epigenetically modulating Smad7 expression and at least by partly inhibiting EMT.

20(S)- Protopanaxadiol suppresses hepatic stellate cell activation via WIF1 demethylation-mediated inactivation of the Wnt/β-catenin pathway

  • Chunxue Li ;Yating Zhan ;Rongrong Zhang;Qiqi Tao ;Zhichao Lang ;Jianjian Zheng
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.515-523
    • /
    • 2023
  • Background: 20(S)-protopanaxadiol (PPD), one of the main components of ginseng, has anti-inflammatory, anti-estrogenic, and anti-tumor activities. It is known that activated hepatic stellate cells (HSCs) are the primary producers of extracellular matrix (ECM) in the liver, and the Wnt/β-catenin pathway participates in the activation of HSCs. We aimed to explore whether PPD inhibits liver fibrosis is associated with the Wnt/β-catenin pathway inactivation. Methods: The anti-fibrotic roles of PPD were examined both in vitro and in vivo. We also examined the levels of Wnt inhibitory factor 1 (WIF1), DNA methyltransferase 1 (DNMT1) and WIF1 methylation. Results: PPD obviously ameliorated liver fibrosis in carbon tetrachloride (CCl4)-treated mice and reduced collagen deposition. PPD also suppressed the activation and proliferation of primary HSCs. Notably, PPD inhibited the Wnt/β-catenin pathway, reduced TCF activity, and increased P-β-catenin and GSK-3β levels. Interestingly, WIF1 was found to mediate the inactivation of the Wnt/β-catenin pathway in PPD-treated HSCs. WIF1 silencing suppressed the inhibitory effects of PPD on HSC activation and also restored α-SMA and type I collagen levels. The downregulation of WIF1 expression was associated with the methylation of its promoter. PPD induced WIF1 demethylation and restored WIF1 expression. Further experiments confirmed that DNMT1 overexpression blocked the effects of PPD on WIF1 expression and demethylation and enhanced HSC activation. Conclusion: PPD up-regulates WIF1 levels and impairs Wnt/β-catenin pathway activation via the downregulation of DNMT1-mediated WIF1 methylation, leading to HSC inactivation. Therefore, PPD may be a promising therapeutic drug for patients with liver fibrosis.

The Role of Gastrokine 1 in Gastric Cancer

  • Yoon, Jung Hwan;Choi, Won Suk;Kim, Olga;Park, Won Sang
    • Journal of Gastric Cancer
    • /
    • 제14권3호
    • /
    • pp.147-155
    • /
    • 2014
  • Homeostatic imbalance between cell proliferation and death in gastric mucosal epithelia may lead to gastritis and gastric cancer. Despite abundant gastrokine 1 (GKN1) expression in the normal stomach, the loss of GKN1 expression is frequently detected in gastric mucosa infected with Helicobacter pylori, as well as in intestinal metaplasia and gastric cancer tissues, suggesting that GKN1 plays an important role in gastric mucosal defense, and the gene functions as a gastric tumor suppressor. In the stomach, GKN1 is involved in gastric mucosal inflammation by regulating cytokine production, the nuclear factor-${\kappa}B$ signaling pathway, and cyclooxygenase-2 expression. GKN1 also inhibits the carcinogenic potential of H. pylori protein CagA by binding to it, and up-regulates antioxidant enzymes. In addition, GKN1 reduces cell viability, proliferation, and colony formation by inhibiting cell cycle progression and epigenetic modification by down-regulating the expression levels of DNMT1 and EZH2, and DNMT1 activity, and inducing apoptosis through the death receptor-dependent pathway. Furthermore, GKN1 also inhibits gastric cancer cell invasion and metastasis via coordinated regulation of epithelial mesenchymal transition-related protein expression, reactive oxygen species production, and PI3K/Akt signaling pathway activation. Although the modes of action of GKN1 have not been clearly described, recent limited evidence suggests that GKN1 acts as a gastricspecific tumor suppressor. This review aims to discuss, comment, and summarize the recent progress in the understanding of the role of GKN1 in gastric cancer development and progression.

Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts

  • Sufaru, Irina-Georgeta;Beikircher, Gabriel;Weinhaeusel, Andreas;Gruber, Reinhard
    • Journal of Periodontal and Implant Science
    • /
    • 제47권2호
    • /
    • pp.66-76
    • /
    • 2017
  • Purpose: Oral wound healing requires gingival fibroblasts to respond to local growth factors. Epigenetic silencing through DNA methylation can potentially decrease the responsiveness of gingival fibroblasts to local growth factors. In this study, our aim was to determine whether the inhibition of DNA methylation sensitized gingival fibroblasts to transforming growth factor-${\beta}1$ (TGF-${\beta}1$). Methods: Gingival fibroblasts were exposed to 5-aza-2'-deoxycytidine (5-aza), a clinically approved demethylating agent, before stimulation with TGF-${\beta}1$. Gene expression changes were evaluated using quantitative polymerase chain reaction (PCR) analysis. DNA methylation was detected by methylation-sensitive restriction enzymes and PCR amplification. Results: We found that 5-aza enhanced TGF-${\beta}1$-induced interleukin-11 (IL11) expression in gingival fibroblasts 2.37-fold (P=0.008). 5-aza had no significant effects on the expression of proteoglycan 4 (PRG4) and NADPH oxidase 4 (NOX4). Consistent with this, 5-aza caused demethylation of the IL11 gene commonly next to a guanosine (CpG) island in gingival fibroblasts. The TGF-${\beta}$ type I receptor kinase inhibitor SB431542 impeded the changes in IL11 expression, indicating that the effects of 5-aza require TGF-${\beta}$ signaling. 5-aza moderately increased the expression of TGF-${\beta}$ type II receptor (1.40-fold; P=0.009), possibly enhancing the responsiveness of fibroblasts to TGF-${\beta}1$. As part of the feedback response, 5-aza increased the expression of the DNA methyltransferases 1 (DNMT1) (P=0.005) and DNMT3B (P=0.002), which are enzymes responsible for gene methylation. Conclusions: These in vitro data suggest that the inhibition of DNA methylation by 5-aza supports TGF-${\beta}$-induced IL11 expression in gingival fibroblasts.

Psammaplin A-Modified Novel Radiosensitizers for Human Lung Cancer and Glioblastoma Cells

  • Wee, Chan Woo;Kim, Jin Ho;Kim, Hak Jae;Kang, Hyun-Cheol;Suh, Soo Youn;Shin, Beom Soo;Ma, Eunsook;Kim, Il Han
    • Journal of Radiation Protection and Research
    • /
    • 제44권1호
    • /
    • pp.15-25
    • /
    • 2019
  • Background: Psammaplin A (PsA) is a radiosensitizer whereas its clinical application is hampered by poor bioavailability. This study aimed to synthesize novel radiosensitizers using PsA as the lead compound. Materials and Methods: Eight homodimeric disulfides were synthesized from corresponding acid and cystamine dihydrochloride in N-hydroxysuccinimide and dicyclohexylcarbodiimide coupling conditions. One monomeric thiol analog was obtained by reduction of homodimeric disulfide with dithiothreitol. Clonogenic assay was used to measure cell survival after irradiation and drug treatment in human lung cancer (A549) and glioblastoma (U373MG) cells. Results and Discussion: Using the PsA backbone, nine compounds were synthesized. Eight compounds showed variable cytotoxicity with 50% inhibitory concentrations ranging $16.14{\mu}M$ to $150.10{\mu}M$ (A549), and $13.25{\mu}M$ to $50.15{\mu}M$ (U373MG). Four and six compounds radiosensitized A549 and U373MG cells, respectively. Two compounds that radiosensitized both cell lines were tested for its inhibitory effects on DNMT1. One of them was shown to significantly inhibit DNMT1 activity. Conclusion: Novel compounds with radiosensitizing activity were synthesized. These compounds have a great potential to serve as a basis for the development of future radiosensitizers. Further investigation is warranted for their clinical application.

인체대장암 세포에서 후성적 유전자 불활성화 저해제와 5-Fluorouracil의 병용효과분석 (Combinatorial Effect of 5-FU and Epigenetic Silencing Repressors in Human Colorectal Cancer Cells)

  • 김미영;손정규;이숙경;구효정
    • 약학회지
    • /
    • 제49권6호
    • /
    • pp.511-517
    • /
    • 2005
  • Low sensitivity to anticancer drugs such as 5-fluorouracil (5-FU) has been associated with decreased expression of genes involved in cell proliferation, apoptosis and metastasis. Recently, it has been shown that the expression levels of some of these genes are reduced by transcription inhibition due to epigenetic silencing on CpG islands. Therefore, epigenetic therapy has been proposed, where epigenetic silencing is repressed with DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors alone or in combination with other chemotherapeutic agents. The aim of our study was to evaluate the combination effect of 5-FU and its association with the status of epigenetic silencing using methylation-specific PCR of $p14^{ARF}$ when given with S-aza-2'-deoxycytidine (5-aza-dC), a DNMT inhibitor and depsipeptide, an HDAC inhibitor in DLD-1 human colorectal cancer cells. The combination of 5-aza-dC with depsipeptide showed a synergism and induced unmethylation of $p14^{ARF}$. However, triplet combination of 5-aza-dc/depsipeptide and 5-FU resulted in antagonistic effects and abrogated unmethylation of $p14^{ARF}$. These results suggest that unfavorable interaction of 5-aza-dC/depsipeptide with 5-FU in DLD-1 cells may be related with the failure in repression of epigenetic silencing, which warrants further investigation.

Effects of Repeated Ovarian Stimulation on Ovarian Function and Aging in Mice

  • Whang, Jihye;Ahn, Cheyoung;Kim, Soohyun;Seok, Eunji;Yang, Yunjeong;Han, Goeun;Jo, Haeun;Yang, Hyunwon
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권4호
    • /
    • pp.213-223
    • /
    • 2021
  • Controlled ovarian hyperstimulation (COH) is routinely used in the in vitro fertilization and embryo transfer (IVF-ET) cycles to increase the number of retrieved mature oocytes. However, the relationship between repeated COH and ovarian function is still controversial. Therefore, we investigated whether repeated ovarian stimulation affects ovarian aging and function, including follicular development, autophagy, and apoptosis in follicles. Ovarian hyperstimulation in mice was induced by intraperitoneal injection with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Mice subjected to ovarian stimulation once were used as a control group and 10 times as an experimental group. Repeated injections with PMSG and hCG significantly reduced the number of primary follicles compared to a single injection. The number of secondary and antral follicles increased slightly, while the number of corpus luteum increased significantly with repeated injections. On the other hand, repeated injections did not affect apoptosis in follicles associated with follicular atresia. The expression of autophagy-related genes Atg5, Atg12, LC3B, and Beclin1, cell proliferation-related genes mTOR, apoptosis-related genes Fas, and FasL was not significantly different between the two groups. In addition, the expression of the aging-related genes Dnmt1, Dnmt3a, and AMH were also not significantly different. In this study, we demonstrated that repeated ovarian stimulation in mice affects follicular development, but not autophagy, apoptosis, aging in ovary. These results suggest that repetition of COH in the IVF-ET cycle may not result in ovarian aging, such as a decrease in ovarian reserve in adult women.