• 제목/요약/키워드: Dnmt1

검색결과 52건 처리시간 0.024초

Embryonic Stem Cells Lacking DNA Methyltransferases Differentiate into Neural Stem Cells that Are Defective in Self-Renewal

  • Bong Jong Seo;Tae Kyung Hong;Sang Hoon Yoon;Jae Hoon Song;Sang Jun Uhm;Hyuk Song;Kwonho Hong;Hans Robert Scholer;Jeong Tae Do
    • International Journal of Stem Cells
    • /
    • 제16권1호
    • /
    • pp.44-51
    • /
    • 2023
  • Background and Objectives: DNA methyltransferases (Dnmts) play an important role in regulating DNA methylation during early developmental processes and cellular differentiation. In this study, we aimed to investigate the role of Dnmts in neural differentiation of embryonic stem cells (ESCs) and in maintenance of the resulting neural stem cells (NSCs). Methods and Results: We used three types of Dnmt knockout (KO) ESCs, including Dnmt1 KO, Dnmt3a/3b double KO (Dnmt3 DKO), and Dnmt1/3a/3b triple KO (Dnmt TKO), to investigate the role of Dnmts in neural differentiation of ESCs. All three types of Dnmt KO ESCs could form neural rosette and differentiate into NSCs in vitro. Interestingly, however, after passage three, Dnmt KO ESC-derived NSCs could not maintain their self-renewal and differentiated into neurons and glial cells. Conclusions: Taken together, the data suggested that, although deficiency of Dnmts had no effect on the differentiation of ESCs into NSCs, the latter had defective maintenance, thereby indicating that Dnmts are crucial for self-renewal of NSCs.

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone Induces Retinoic Acid Receptor β Hypermethylation through DNA Methyltransferase 1 Accumulation in Esophageal Squamous Epithelial Cells

  • Wang, Jing;Zhao, Shu-Lei;Li, Yan;Meng, Mei;Qin, Cheng-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2207-2212
    • /
    • 2012
  • Overexpression of DNA methyltransferase 1 (DNMT1) has been detected in many cancers. Tobacco exposure is known to induce genetic and epigenetic changes in the pathogenesis of malignancy. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important carcinogen present in tobacco smoke; however the detailed molecular mechanism of how NNK induces esophageal carcinogenesis is still unclear. We found that DNMT1 was overexpressed in ESCC tissues compared with paired non-cancerous tissues, the overexpression being correlated with smoking status and low expression of $RAR{\beta}$. The latter could be upregulated by NNK treatment in Het-1A cells, and the increased DNMT1 expression level reflected promoter hypermethylation and downregulation of retinoic acid receptor ${\beta}$($RAR{\beta}$). RNA interference mediated knockdown of DNMT1 resulted in promoter demethylation and upregulation of $RAR{\beta}$ in KYSE30 and TE-1 cells. 3-(4,5-Dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometric analysis demonstrated that NNK treatment in Het-1A cells could enhance cell proliferation and inhibit cell apoptosis in a dose-dependent manner. In conclusion, DNMT1 overexpression is correlated with smoking status and low expression of $RAR{\beta}$ in esophageal SCC patients. NNK could induce $RAR{\beta}$ promoter hypermethylation through upregulation of DNMT1 in esophageal squamous epithelial cells, finally leading to enhancement of cell proliferation and inhibition of apoptosis.

Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis

  • Min-Ji Park;Woon-Mok Sohn;Young-An Bae
    • Parasites, Hosts and Diseases
    • /
    • 제62권1호
    • /
    • pp.98-116
    • /
    • 2024
  • Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.

Putative association of DNA methyltransferase 1 (DNMT1) polymorphisms with clearance of HBV infection

  • Chun, Ji-Yong;Bae, Joon-Seol;Park, Tae-June;Kim, Jason-Y.;Park, Byung-Lae;Cheong, Hyun-Sub;Lee, Hyo-Suk;Kim, Yoon-Jun;Shin, Hyoung-Doo
    • BMB Reports
    • /
    • 제42권12호
    • /
    • pp.834-839
    • /
    • 2009
  • DNA methyltransferase (DNMT) 1 is the key enzyme responsible for DNA methylation, which often occurs in CpG islands located near the regulatory regions of genes and affects transcription of specific genes. In this study, we examined the possible association of DNMT1 polymorphisms with HBV clearance and the risk of hepatocellular carcinoma (HCC). Seven common polymorphic sites were selected by considering their allele frequencies, haplotype-tagging status and LDs for genotyping in larger-scale subjects (n = 1,100). Statistical analysis demonstrated that two intron polymorphisms of DNMT1, +34542G > C and +38565G > T, showed significant association with HBV clearance in a co-dominant model (OR = 1.30, $P^{corr}$ = 0.03) and co- dominant/recessive model (OR = 1.34-1.74, $P^{corr}$ = 0.01-0.03), respectively. These results suggest that two intron polymorphisms of DNMT1, +34542G > C and +38565G > T, might affect HBV clearance.

Enhanced anticancer effects of a methylation inhibitor by inhibiting a novel DNMT1 target, CEP 131, in cervical cancer

  • Kim, Dong Hyun;Kim, Hye-Min;Huong, Pham Thi Thu;Han, Ho-Jin;Hwang, Joonsung;Cha-Molstad, Hyunjoo;Lee, Kyung Ho;Ryoo, In-Ja;Kim, Kyoon Eon;Huh, Yang Hoon;Ahn, Jong Seog;Kwon, Yong Tae;Soung, Nak-Kyun;Kim, Bo Yeon
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.342-347
    • /
    • 2019
  • Methylation is a primary epigenetic mechanism regulating gene expression. 5-aza-2'-deoxycytidine is an FDA-approved drug prescribed for treatment of cancer by inhibiting DNA-Methyl-Transferase 1 (DNMT1). Results of this study suggest that prolonged treatment with 5-aza-2'-deoxycytidine could induce centrosome abnormalities in cancer cells and that CEP131, a centrosome protein, is regulated by DNMT1. Interestingly, cancer cell growth was attenuated in vitro and in vivo by inhibiting the expression of Cep131. Finally, Cep131-deficient cells were more sensitive to treatment with DNMT1 inhibitors. These findings suggest that Cep131 is a potential novel anti-cancer target. Agents that can inhibit this protein may be useful alone or in combination with DNMT1 inhibitors to treat cancer.

한국인에서 DNMT3b 유전자 다형성과 위암의 감수성 (DNMT3b Promoter Polymorphism and Risk of Gastric Cancer in the Korean Population)

  • 김성근;정헌;김신선;전경화;송교영;김진조;진형민;김욱;박조현;박승만;임근우;김승남;전해명
    • Journal of Gastric Cancer
    • /
    • 제7권1호
    • /
    • pp.9-15
    • /
    • 2007
  • 목적: DNA 메틸화는 암 발생과정에 있어 중요한 기전 중 하나이다. DNA 메틸화는 DNMT (DNA methyltransferase)에 의해 매개되는데 이중 DNMT3b가 암세포에서 주로 암억제 유전자의 메틸화 정도롤 조절하는 것으로 알려져 있다. 저자들은 DNMT3b 유전자의 촉진자의 다형성과 한국인에서 위암발생의 연관성을 알아보고자 하였다. 대상 및 방법: 2001년 12월에서 2002년 12월까지 가톨릭대학교 성모병원에서 위암으로 진단받고 위 절제술을 받은 사람 중에서 176명과 같은 기간동안 내시경 검사를 시행했던 사람들 중 위암과 관련이 없는 경우 70명을 대상으로 하였다. DNMT3b 촉진자 다형성은 연쇄효소중합반응과 제한분절 길이 다형성 분석으로 유전형을 관찰하였다. 위암 환자에서 대립유전자 및 유전자형을 대조군과 비교하여 이런 다형성이 한국인에서 위암의 감수성을 증가시키는가에 대하여 연구하였다. 결과: DNMT3b 촉진자의 유전형은 환자군에서 14.8% (CC), 71.6% (CT), 13.6% (TT)를 보였고, 대조군에서 40% (CC), 42.9% (CT), 17.1% (TT)를 보였다. CT 이종접합체군에서 약 4.5배(OR 2.13; 95% CI, 2.324~8.803), TT 동종접합체군에서는 약 2.2배(교차비 1.42; 95% 신뢰구간, 0.899~5.165)의 위암발생률의 증가를 보였다. T 변이체 전체로는 약 3.8배의 위험률 증가를 보였다(교차비 1.88; 95%신뢰구간 2.040~7.251). 위암의 병기나 조직학적 소견, Helicobacter pylori 감염과는 유의한 관계를 보이지 않았다. 결론: DNMT3b 촉진자의 다형성은 T 변이체에서 한국인에서 위암 발생 위험도를 증가시킨다. 이러한 다형성과 위암의 병기, 조직학적 유형, Helicobacter pylori 감염과는 관련이 없었다.

  • PDF

Inhibition of DNMT3B and PI3K/AKT/mTOR and ERK Pathways as a Novel Mechanism of Volasertib on Hypomethylating Agent-Resistant Cells

  • Eun-Ji Choi;Bon-Kwan Koo;Eun-Hye Hur;Ju Hyun Moon;Ji Yun Kim;Han-Seung Park;Yunsuk Choi;Kyoo-Hyung Lee;Jung-Hee Lee;Eun Kyung Choi;Je-Hwan Lee
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.319-329
    • /
    • 2023
  • Resistance to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is a concerning problem. Polo-like kinase 1 (PLK1) is a key cell cycle modulator and is known to be associated with an activation of the PI3K pathway, which is related to the stabilization of DNA methyltransferase 1 (DNMT1), a target of HMAs. We investigated the effects of volasertib on HMA-resistant cell lines (MOLM/AZA-1 and MOLM/DEC-5) derived from MOLM-13, and bone marrow (BM) samples obtained from patients with MDS (BM blasts >5%) or AML evolved from MDS (MDS/AML). Volasertib effectively inhibited the proliferation of HMA-resistant cells with suppression of DNMTs and PI3K/AKT/mTOR and ERK pathways. Volasertib also showed significant inhibitory effects against primary BM cells from patients with MDS or MDS/AML, and the effects of volasertib inversely correlated with DNMT3B expression. The DNMT3B-overexpressed AML cells showed primary resistance to volasertib treatment. Our data suggest that volasertib has a potential role in overcoming HMA resistance in patients with MDS and MDS/AML by suppressing the expression of DNMT3 enzymes and PI3K/AKT/mTOR and ERK pathways. We also found that DNMT3B overexpression might be associated with resistance to volasertib.

Hep3B 세포에서 베르베린은 DNA methyltransferase3b 억제를 통해 p53을 발현시켜 세포사멸을 유도 (Berberine Induces p53-Dependent Apoptosis through Inhibition of DNA Methyltransferase3b in Hep3B Cells)

  • 김대연;김선형;정희태;라창식;이기종;정배동
    • 대한임상검사과학회지
    • /
    • 제52권1호
    • /
    • pp.69-77
    • /
    • 2020
  • 종양 억제 유전자 p53은 인간 간암세포 Hep3B에서는 불활성화되어 있다. 베르베린(berberine)은 암세포의 증식을 억제하는 것으로 보고되어 있다. 우리는 베르베린을 처리한 Hep3B 세포에서 세포사멸이 유도되는지를 조사하였고 이 세포사멸이 p53과 DNA methyltransferase의 발현과 연관되어 있는지를 관찰하였다. MTT 분석을 통하여 세포 생존력을 측정하였다. 세포사멸은 각각 Annexin V flow 세포 분석을 사용하여 측정하였다. 베르베린이 처리된 세포에서 DNMT 효소 활성, mRNA 발현, 단백질 발현 정도가 검사되었으며, p53 단백질 발현은 웨스턴 블롯 분석에 의해 검사되었다. 베르베린 처리는 시간 및 용량 의존적으로 Hep3B세포의 세포사멸을 증가시켰다. 베르베린 처리 시 DNMT3b의 활성 정도, mRNA 발현 그리고 단백질 발현 정도가 모두 감소되었다. 이와는 대조적으로, Hep3B에서는 비활성인 p53 단백질의 발현은 DNMT3b의 감소와 동시에 증가했다. ERK의 발현은 변화가 없었으나, P-ERK의 발현은 농도 의존적으로 감소하는 것으로 나타났다. 이러한 결과는 Hep3B 세포에 베르베린의 처리는 DNMT3b의 발현을 감소시켜서 종양 억제 유전자인 p53의 증가를 유도할 수 있고, 이를 통해서 세포사멸을 증가 시킬 수 있다는 것을 나타낸다. 이는 베르베린이 간암 세포의 증식 억제에 효과적으로 작용할 수 있음을 보여준다.

In silico docking of methyl isocyanate (MIC) and its hydrolytic product (1, 3-dimethylurea) shows significant interaction with DNA Methyltransferase 1 suggests cancer risk in Bhopal-Gas-Tragedy survivors

  • Khan, Inbesat;Senthilkumar, Chinnu Sugavanam;Upadhyay, Nisha;Singh, Hemant;Sachdeva, Meenu;Jatawa, Suresh Kumar;Tiwari, Archana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7663-7670
    • /
    • 2015
  • DNA methyltransferase 1 (DNMT1) is a relatively large protein family responsible for maintenance of normal methylation, cell growth and survival in mammals. Toxic industrial chemical exposure associated methylation misregulation has been shown to have epigenetic influence. Such misregulation could effectively contribute to cancer development and progression. Methyl isocyanate (MIC) is a noxious industrial chemical used extensively in the production of carbamate pesticides. We here applied an in silico molecular docking approach to study the interaction of MIC with diverse domains of DNMT1, to predict cancer risk in the Bhopal population exposed to MIC during 1984. For the first time, we investigated the interaction of MIC and its hydrolytic product (1,3-dimethylurea) with DNMT1 interacting (such as DMAP1, RFTS, and CXXC) and catalytic (SAM, SAH, and Sinefungin) domains using computer simulations. The results of the present study showed a potential interaction of MIC and 1,3-dimethylurea with these domains. Obviously, strong binding of MIC with DNMT1 interrupting normal methylation will lead to epigenetic alterations in the exposed humans. We suggest therefore that the MIC-exposed individuals surviving after 1984 disaster have excess risk of cancer, which can be attributed to alterations in their epigenome. Our findings will help in better understanding the underlying epigenetic mechanisms in humans exposed to MIC.

A novel mutation in the DNMT1 gene in a patient presenting with pure cerebellar ataxia

  • Algahtani, Hussein;Shirah, Bader
    • Journal of Genetic Medicine
    • /
    • 제14권2호
    • /
    • pp.71-74
    • /
    • 2017
  • Mutations in the DNA methyltransferase 1 gene (DNMT1) were reported to cause two phenotypes: OMIM 604121 and OMIM 614116. The first phenotype includes autosomal dominant cerebellar ataxia, deafness, and narcolepsy, which were reported to be caused by mutations in exon 21. The second phenotype includes hereditary sensory and autonomic neuropathy type 1E, which was suggested to be caused by mutations in exon 20 and 21. In this article, we report a novel heterozygous missense variant c.898A>C, p.(Lys300Gln) in exon 12 of DNMT1 in a young woman who presented with pure cerebellar ataxia. This report indicates that a mutation in exon 12 may lead to pure cerebellar ataxia. Another possibility is that the patient is currently in an early stage of the disease, and as the disease progresses, she will have more manifestations. To confirm or exclude this possibility, a subsequent follow-up study reporting the disease progression in this patient may be needed. Further reports of cases with the same mutation are needed to confirm the phenotype of this mutation.