• Title/Summary/Keyword: Division in charge

Search Result 520, Processing Time 0.029 seconds

Improved Dual-Path Energy Recovery Circuit using a Current Source and a Voltage Source for High Resolution and Large-Sized Plasma Display Panel

  • Yi, Kang-Hyun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.544-546
    • /
    • 2008
  • An improved dual-path energy recovery circuit (ERC) using a current source and a voltage source for plasma display panel (PDP) is proposed. The proposed ERC uses the voltage source to charge a panel and the current source to discharge the panel. Thus, the proposed circuit can make the panel charge to $V_S$ and discharge to 0V, fully and it is possible to achieve zero voltage switching (ZVS) of all switches in H-bridge inverter and zero current switching (ZCS) of all switches in the ERC. Moreover, it has less conduction and switching loss in ERC devices by the dual energy recovery paths for charging and discharging the panel. Furthermore, it has features of canceling the gas discharge current, high performance and the low cost ERC components. The operation principle and features of the proposed ERC are presented in detail and verified with 42-inch SD PDP.

  • PDF

Controlled Charge Carrier Transport and Recombination for Efficient Electrophosphorescent OLED

  • Chin, Byung-Doo;Choi, Yu-Ri;Eo, Yong-Seok;Yu, Jai-Woong;Baek, Heume-Il;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1418-1420
    • /
    • 2008
  • In this paper, the light emitting efficiency, spectrum, and the lifetime of the phosphorescent devices, whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping induced by the emissive dopant, are explained by differences in the energy levels of the host, dopant, and nearby transport layers. On the basis of our finding on device performance and photocurrent measurement data by time-of-flight (TOF), we investigated the effect of the difference of carrier trapping dopant and properties of the host materials on the efficiency roll-off of phosphorescent organic light emitting diode (OLED), along with a physical interpretation and practical design scheme, such as a multiple host system, for improving the efficiency and lifetime of devices.

  • PDF

Development of hand-held coded-aperture gamma ray imaging system based on GAGG(Ce) scintillator coupled with SiPM array

  • Jeong, Manhee;Hammig, Mark
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2572-2580
    • /
    • 2020
  • Emerging gamma ray detection applications that utilize neutron-based interrogation result in the prompt emission of high-energy (>2 MeV) gamma-rays. Rapid imaging is enabled by scintillators that possess high density, high atomic number, and excellent energy resolution. In this paper, we evaluate the bright (50,000 photons/MeV) oxide scintillator, cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)). A silicon photomultiplier (SiPM) array is coupled to a GAGG(Ce) scintillator array (12 × 12 pixels) and integrated into a coded-aperture based gamma-ray imaging system. A resistor-based symmetric charge division circuit was used reduce the multiplicity of the analog outputs from 144 to 4. The developed system exhibits 9.1%, 8.3%, and 8.0% FWHM energy resolutions at 511 keV, 662 keV, and 1173.2 keV, respectively. In addition, a pixel-identification resolution of 602 ㎛ FWHM was obtained from the GAGG(Ce) scintillator array.

The Pricing Behavior of Korean Gas Stations (주유소의 가격결정전략)

  • Jo, Young Jin;Lee, Jee Hoon;Yoon, Choong Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.331-341
    • /
    • 2015
  • Gasoline prices vary across Korea. Some gas stations charge higher prices, while others charge lower prices. In this paper, we try to find: why gasoline prices differ markedly across regions. We empirically estimate the determinants of gas prices by incorporating supply side factors as well as demand side factors into the empirical model. Empirical results show that both location-specific factors and store-specific factors affect gas prices. Concentration of competing stores, store brands, ownership of gas stations, and self-service availability influence gas prices. In addition, the availability of other customer services such as convenience stores, car wash, and auto repairs affects gas prices.

Simulation of 27Al MQMAS NMR Spectra of Mordenites Using Point Charge Model with First Layer Only and Multiple Layers of Atoms

  • Chae, Seen-Ae;Han, Oc-Hee;Lee, Sang-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2069-2074
    • /
    • 2007
  • The 27Al multiple quantum magic angle spinning (MQMAS) nuclear magnetic resonance (NMR) spectra of mordenite zeolites were simulated using the point charge model (PCM). The spectra simulated by the PCM considering nearest neighbor atoms only (PCM-n) or including atoms up to the 3rd layer (PCM-m) were not different from those generated by the Hartree-Fock (HF) molecular orbital calculation method. In contrast to the HF and density functional theory methods, the PCM method is simple and convenient to use and does not require sophisticated and expensive computer programs along with specialists to run them. Thus, our results indicate that the spectral simulation of the 27Al MQMAS NMR spectra obtained with the PCM-n is useful, despite its simplicity, especially for porous samples like zeolites with large unit cells and a high volume density of pores. However, it should be pointed out that this conclusion might apply only for the atomic sites with small quadrupole coupling constants.

Polyelectrolyte Micropatterning Using Agarose Plane Stamp and a Substrate Having Microscale Features on Its Surface

  • Lee, Min-Jung;Lee, Nae-Yoon;Lee, Sang-Kil;Park, Sung-Su;Kim, Youn-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1539-1542
    • /
    • 2005
  • We have introduced polyelectrolyte micro-patterning technique employing agarose plane stamp and a hard substrate having microscale features on its surface. With this method, chemically micropatterned surfaces with both positive and negative functionalities were successfully embedded in well-defined microstructures, and selective impartment of charge functionalities was confirmed by patterning bead bearing surface charge. Furthermore, this technique allows highly sensitive immobilization of protein onto targeted surface simply by endowing functionalities, which extends the potential of its use as a tool for high-throughput protein microarray and proteomics. Because plane agarose stamp is free of structures on its surface, there is no concern for pattern collapse, and the combination of agarose plane stamp with patterned substrate is more suited for selective protein patterning compared with adopting surface-patterned agarose stamp with flat substrate. Our technique using agarose plane stamp and a substrate having microscale features on its surface suggests a range of possible applications, including the micropatterning of biofunctionalized copolymer having polyelectrolyte block, immobilization of micro- and nanoparticle with biofunctionalities such as biotin and streptavidine, and establishing optoelectronic microstructures with micro-beads on various surfaces.

Efficient Electron Transfer in CdSe-py-SWNTs FETs

  • Jeong, So-Hee;Shim, H.C.;Han, Chang-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.63-63
    • /
    • 2010
  • Ability to transport extracted carriers from NQDs is essential for the development of most NQD based applications. Strategies to facilitate carrier transport while preserving NQDs' optical characteristics include: 1) Fabricating neat films of NQDs with modified surfaces either by adapting series of ligands with certain limitations or by applying physical processes such as heat annealing 2) Coupling of NQDs to one-dimensional nanostructures such as single walled carbon nanotubes (SWNTs) or various types of nanowires. NQD-nanowire hybrid nanostructures are expected to facilitate selective wavelength absorption, charge transfer to 1-D nanostructures, and efficient carrier transport. Even with the vast interests in using NQD-SWNT hybrid materials in optoelectric applications, still, no reports so far have clearly elucidated the optoelectric behavior when they were assembled on the FET mainly because the complexity involving in both components in their preparation and characterization. We have monitored the optical properties of both components (NQDs, SWNTs) from the synthesis, to the assembly, and to the device. More importantly, by using pyridine molecules as a linker to non-covalently attach NQDs to SWNTs, we were able to assemble NQDs on SWNTs with precise density control without harming their electronic structures. Furthermore, by measuring electrical signals from the fabricated aligned SWNTs-FET using dielectrophoresis (DEP), we were able to elucidate the charge transfer mechanism.

  • PDF

Modeling of the charge and discharge behavior of the 2S2P(2 series-2 parallel) AGM battery system for commercial vehicles (상용자동차용 직·병렬 AGM 배터리 시스템의 충·방전 거동 모델링)

  • Lee, Jeongbin;Kim, Ui Seong;Yi, Jae-Shin;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.346-355
    • /
    • 2012
  • Recent in the world environmental issues and energy depletion problems have been received attention. One way to solve these problems is to use hybrid electric vehicles (HEVs). Therefore, the interest in HEV technology is higher than ever before. Viable candidates for the energy-storage systems in HEV applications may be absorbent glass mat (AGM) lead-acid, nickel-metal-hydride (Ni-MH) and rechargeable lithium batteries. The AGM battery has advantages in terms of relatively low cost, high charge efficiency, low self-discharge, low maintenance requirements and safety as compared to the other batteries. In order to implement HEV system in required more electric power commercial vehicles AGM batteries was connected to 2 series-2 parallels (2S2P). In this study, a one-dimensional modeling is carried-out to predict the behaviors of 2S2P AGM batteries system during charge and discharge. The model accounts for electrochemical reaction rates, charge conservation and mass transport. In order to validate the model, modeling results are compared with the experimentally measured data in various conditions.

Electronic Structure and Photoreactivity of N-Methyllutione (N-메틸루티돈의 電子構造와 光化學反應性에 關한 硏究)

  • Shim Sang Chul;Hyun Myung Ho;Chae Kyu Ho
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.434-439
    • /
    • 1977
  • The electronic structures of 4-pyridone and lutidone are studied by the SCF MO-CI PPP method and by the configuration analysis method. The spectral data are consistent with the values calculated by the method. The polarization of $S_1({\pi},{\pi}^*)$ state is along the long molecular axis in both compounds. The lowest $({\pi},{\pi}^*)$1 state shows significant charge transfer (16∼18%) from ${\pi}$ bonding orbital of C=O moiety to ${\pi}^*$ antibonding orbital of divinyl amine moiety. The lowest triplet state shows much larger charge transfer (24∼29 %) but in opposite direction compared to that of $S_1({\pi},{\pi}^*)$ state.

  • PDF