• Title/Summary/Keyword: Division Algorithm

Search Result 3,039, Processing Time 0.03 seconds

Effect of cone-beam computed tomography metal artefact reduction on incomplete subtle vertical root fractures

  • Andrea Huey Tsu Wang;Francine Kuhl Panzarella;Carlos Eduardo Fontana;Jose Luiz Cintra Junqueira;Carlos Eduardo da Silveira Bueno
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Purpose: This study compared the accuracy of detection of incomplete vertical root fractures (VRFs) in filled and unfilled teeth on cone-beam computed tomography images with and without a metal artefact reduction (MAR) algorithm. Materials and Methods: Forty single-rooted maxillary premolars were selected and, after endodontic instrumentation, were categorized as unfilled teeth without fractures, filled teeth without fractures, unfilled teeth with fractures, or filled teeth with fractures. Each VRF was artificially created and confirmed by operative microscopy. The teeth were randomly arranged, and images were acquired with and without the MAR algorithm. The images were evaluated with OnDemand software (Cybermed Inc., Seoul, Korea). After training, 2 blinded observers each assessed the images for the presence and absence of VRFs 2 times separated by a 1-week interval. P-values<0.05 were considered to indicate significance. Results: Of the 4 protocols, unfilled teeth analysed with the MAR algorithm had the highest accuracy of incomplete VRF diagnosis (0.65), while unfilled teeth reviewed without MAR were associated with the least accurate diagnosis (0.55). With MAR, an unfilled tooth with an incomplete VRF was 4 times more likely to be identified as having an incomplete VRF than an unfilled tooth without this condition, while without MAR, an unfilled tooth with an incomplete VRF was 2.28 times more likely to be identified as having an incomplete VRF than an unfilled tooth without this condition. Conclusion: The use of the MAR algorithm increased the diagnostic accuracy in the detection of incomplete VRF on images of unfilled teeth.

Design of Efficient Flicker Detector for CMOS Image Sensor (CMOS Image sensor 를 위한 효과적인 플리커 검출기 설계)

  • Lee, Pyeong-Woo;Lee, Jeong-Guk;Kim, Chae-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.739-742
    • /
    • 2005
  • In this paper, an efficient detection algorithm for the flicker, which is caused by mismatching between light frequency and exposure time at CMOS image sensor (CIS), is proposed. The flicker detection can be implemented by specific hardware or complex signal processing logic. However it is difficult to implement on single chip image sensor, which has pixel, CDS, ADC, and ISP on a die, because of limited die area. Thus for the flicker detection, the simple algorithm and high accuracy should be achieved on single chip image sensor,. To satisfy these purposes, the proposed algorithm organizes only simple operation, which calculates the subtraction of horizontal luminance mean between continuous two frames. This algorithm was verified with MATLAB and Xilinx FPGA, and it is implemented with Magnachip 0.18 standard cell library. As a result, the accuracy is 95% in average on FPGA emulation and the consumed gate count is about 7,500 gates (@40MHz) for implementation using Magnachip 0.18 process.

  • PDF

Study on Satellite Vibration Control Using Adaptive Algorithm

  • Oh, Choong-Seok;Oh, Se-Boung;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2120-2125
    • /
    • 2005
  • The principal idea of vibration isolation is to filter out the response of the system over the corner frequency. The isolation objectives are to transmit the attitude control torque within the bandwidth of the attitude control system and to filter all the high frequency components coming from vibration equipment above the bandwidth. However, when a reaction wheels or control momentum gyros control spacecraft attitude, vibration inevitably occurs and degrades the performance of sensitive devices. Therefore, vibration should be controlled or isolated for missions such as Earth observing, broadcasting and telecommunication between antenna and ground stations. For space applications, technicians designing controller have to consider a periodic vibration and disturbance to ensure system performance and robustness completing various missions. In general, past research isolating vibration commonly used 6 degree order freedom isolators such as Stewart and Mallock platforms. In this study, the vibration isolation device has 3 degree order freedom, one translational and two rotational motions. The origin of the coordinate is located at the center-of-gravity of the upper plane. In this paper, adaptive notch filter finds the disturbance frequency and the reference signal in filtered-x least mean square is generated by the notch frequency. The design parameters of the notch filter are updated continuously using recursive least square algorithm. Therefore, the adaptive filtered-x least mean square algorithm is applied to the vibration suppressing experiment without reference sensor. This paper shows the experimental results of an active vibration control using an adaptive filtered-x least mean squares algorithm.

  • PDF

A BLMS Adaptive Receiver for Direct-Sequence Code Division Multiple Access Systems

  • Hamouda Walaa;McLane Peter J.
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.243-247
    • /
    • 2005
  • We propose an efficient block least-mean-square (BLMS) adaptive algorithm, in conjunction with error control coding, for direct-sequence code division multiple access (DS-CDMA) systems. The proposed adaptive receiver incorporates decision feedback detection and channel encoding in order to improve the performance of the standard LMS algorithm in convolutionally coded systems. The BLMS algorithm involves two modes of operation: (i) The training mode where an uncoded training sequence is used for initial filter tap-weights adaptation, and (ii) the decision-directed where the filter weights are adapted, using the BLMS algorithm, after decoding/encoding operation. It is shown that the proposed adaptive receiver structure is able to compensate for the signal-to­noise ratio (SNR) loss incurred due to the switching from uncoded training mode to coded decision-directed mode. Our results show that by using the proposed adaptive receiver (with decision feed­back block adaptation) one can achieve a much better performance than both the coded LMS with no decision feedback employed. The convergence behavior of the proposed BLMS receiver is simulated and compared to the standard LMS with and without channel coding. We also examine the steady-state bit-error rate (BER) performance of the proposed adaptive BLMS and standard LMS, both with convolutional coding, where we show that the former is more superior than the latter especially at large SNRs ($SNR\;\geq\;9\;dB$).

Optimal Auto-tuning Algorithm for Design of a Hybrid Fuzzy Controller (하이브리드 퍼지제어기의 설계를 위한 최적 자동동조알고리즘)

  • Kim, Joong-Young;Lee, Dae-Keun;Oh, Sung-Kwan;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.501-503
    • /
    • 1999
  • In this paper, the design method of a hybrid fuzzy controller with an optimal auto-tuning method is proposed. The conventional PID controller becomes so sensitive to the control environments and the change of parameters that the efficiency of its utility for the complex and nonlinear plant has been questioned in transient state. In this paper, first, a hybrid fuzzy logic controller(HFLC) is proposed. The control input of the system in the HFLC is a convex combination by a fuzzy variable of the FLC's output in transient state and the PID's output in steady state. Second, a powerful auto-tuning algorithm is presented to automatically improve the Performance of controller, utilizing the improved complex method and the genetic algorithm. The algorithm estimates automatically the optimal values of scaling factors and PID coefficients. Controllers are applied to the plants with time-delay and the DC servo motor Computer simulations are conducted at the step input and the system performances are evaluated in the ITAE.

  • PDF

Relative azimuth estimation algorithm using rotational displacement

  • Kim, Jung-Ha;Kim, Hyun-Jun;Kim, Jong-Su;Lee, Sung-Geun;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.188-194
    • /
    • 2014
  • Recently, indoor localization systems based on wireless sensor networks have received a great deal of attention because they help achieve high accuracy in position determination by using various algorithms. In order to minimize the error in the estimated azimuth that can occur owing to sensor drift and recursive calculation in these algorithms, we propose a novel relative azimuth estimation algorithm. The advantages of the proposed technique in an indoor environment are that an improved weight average filter is used to effectively reduce impulse noise from the raw data acquired from nodes with inherent errors and a rotational displacement algorithm is applied to obtain a precise relative azimuth without using additional sensors, which can be affected by electromagnetic noise. Results from simulations show that the proposed filter reduces the impulse noise, and the acquired estimation error does not accumulate with time by using proposed algorithm.

ZEUS: Handover algorithm for 5G to achieve zero handover failure

  • Park, Hyun-Seo;Lee, Yuro;Kim, Tae-Joong;Kim, Byung-Chul;Lee, Jae-Yong
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.361-378
    • /
    • 2022
  • In 5G, the required target for interruption time during a handover (HO) is 0 ms. However, when a handover failure (HOF) occurs, the interruption time increases significantly to more than hundreds of milliseconds. Therefore, to fulfill the requirement in as many scenarios as possible, we need to minimize HOF rate as close to zero as possible. 3GPP has recently introduced conditional HO (CHO) to improve mobility robustness. In this study, we propose "ZEro handover failure with Unforced and automatic time-to-execute Scaling" (ZEUS) algorithm to optimize HO parameters easily in the CHO. Analysis and simulation results demonstrate that ZEUS can achieve a zero HOF rate without increasing the ping-pong rate. These two metrics are typically used to assess an HO algorithm because there is a tradeoff between them. With the introduction of the CHO, which solves the tradeoff, only these two metrics are insufficient anymore. Therefore, to evaluate the optimality of an HO algorithm, we define a new integrated HO performance metric, mobility-aware average effective spectral efficiency (MASE). The simulation results show that ZEUS provides higher MASE than LTE and other CHO variants.

Micro-CT image-based reconstruction algorithm for multiscale modeling of Sheet Molding Compound (SMC) composites with experimental validation

  • Lim, Hyoung Jun;Choi, Hoil;Yoon, Sang-Jae;Lim, Sang Won;Choi, Chi-Hoon;Yun, Gun Jin
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.221-239
    • /
    • 2021
  • This paper presents a multiscale modeling method for sheet molding compound (SMC) composites through a novel bundle packing reconstruction algorithm based on a micro-CT (Computed Tomography) image processing. Due to the complex flow pattern during the compression molding process, the SMC composites show a spatially varying orientation and overlapping of fiber bundles. Therefore, significant inhomogeneity and anisotropy are commonly observed and pose a tremendous challenge to predicting SMC composites' properties. For high-fidelity modeling of the SMC composites, the statistical distributions for the fiber orientation and local volume fraction are characterized from micro-CT images of real SMC composites. After that, a novel bundle packing reconstruction algorithm for a high-fidelity SMC model is proposed by considering the statistical distributions. A method for evaluating specimen level's strength and stiffness is also proposed from a set of high-fidelity SMC models. Finally, the proposed multiscale modeling methodology is experimentally validated through a tensile test.

Weight Estimation of the Sea Cucumber (Stichopus japonicas) using Vision-based Volume Measurement

  • Lee, Donggil;Kim, Seonghoon;Park, Miseon;Yang, Yongsu
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2154-2161
    • /
    • 2014
  • Growth analysis and selection of sea cucumbers (Stichopus japonicas) is typically performed through length or weight measurements. However, because sea cucumbers continuously change shape depending on the external environment, weight measurement has been the preferred approach. Weight measurements require extensive time and labor, moreover it is often difficult to accurately weigh sea cucumbers because of their wet surface. The present study measured sea cucumber features, including the body length, width, and thickness, by using a vision system and regression analysis to generate $R^2$ values that were used to develop a weight estimation algorithm. The $R^2$ value between the actual volume and weight of the sea cucumbers was 0.999, which was relatively high. Evaluation of the performance of this algorithm using cross-validation showed that the root mean square error and worst-case prediction error were 1.434 g and ${\pm}5.879g$, respectively. In addition, the present study confirmed that the proposed weight estimation algorithm and single slide rail device for weight measurement can measure weights at approximately 4,500 sea cucumbers per hour.

Development of OHS System Driven by Linear Motor for Automatic Transfer of LCD Panels (선형전동기를 적용한 LCD 패널 자동반송용 순환궤도차량 시스템 개발)

  • Kim, Won-Gon;Yun, Jong-Bo;Park, Gun-Woo;Hwang, Gye-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.11-16
    • /
    • 2008
  • The authors investigated an overhead shuttle (OHS) system for automatic transferring the liquid crystal display (LCD) panels. The constructed tracks of OHS system include the linear and curve regions and have been installed on the ceiling to transfer the cassette of LCD glass along the closed-loop and open-loop tracks. In this study, the OHS system was implemented by a proposed linear motor to solve encoder installation and the system cost problems of the long distance transfer system. In addition, we utilized a new algorithm of the position detection and a new control algorithm for driving linear motor. The newly developed control algorithm was demonstrated from both a computer simulation and an experimentation, indicating that the highly reliable and speedy transfer system can enhance the LCD panel productivity of commercial OHS system.

  • PDF