• Title/Summary/Keyword: Divided Channel

Search Result 390, Processing Time 0.027 seconds

Region-based scalable self-recovery for salient-object images

  • Daneshmandpour, Navid;Danyali, Habibollah;Helfroush, Mohammad Sadegh
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.109-119
    • /
    • 2021
  • Self-recovery is a tamper-detection and image recovery methods based on data hiding. It generates two types of data and embeds them into the original image: authentication data for tamper detection and reference data for image recovery. In this paper, a region-based scalable self-recovery (RSS) method is proposed for salient-object images. As the images consist of two main regions, the region of interest (ROI) and the region of non-interest (RONI), the proposed method is aimed at achieving higher reconstruction quality for the ROI. Moreover, tamper tolerability is improved by using scalable recovery. In the RSS method, separate reference data are generated for the ROI and RONI. Initially, two compressed bitstreams at different rates are generated using the embedded zero-block coding source encoder. Subsequently, each bitstream is divided into several parts, which are protected through various redundancy rates, using the Reed-Solomon channel encoder. The proposed method is tested on 10 000 salient-object images from the MSRA database. The results show that the RSS method, compared to related methods, improves reconstruction quality and tamper tolerability by approximately 30% and 15%, respectively.

Dynamic Slot Allocation Scheme in Tactical Multi-hop Networks for Future Soldier Systems (개인전투체계 다중홉 네트워크를 위한 동적 시간슬롯 할당 기법)

  • Lee, Jongkwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.115-122
    • /
    • 2021
  • In this paper, we propose a dynamic slot allocation scheme to improve the slot utilization rate in tactical multi-hop networks in which the channel condition varies due to node movements. The proposed scheme takes advantage of the fact that nodes that are more than three hops apart can use the same slot simultaneously. The frame is divided into two parts: the control period and the data period. To know the available slot information within two-hop distance, the node exchanges a slot allocation information with one-hop neighbors during the control period. The node can get the information on idle slots that are not used within two-hop distance but assigned already to other nodes that are more than three-hop away. The identified idle slot can be used by the node, which increases the slot utilization rate. The performance analysis results of the proposed scheme show that it increases the slot utilization rate sufficiently despite the overhead of the control period in the multi-hop networks of the future soldier system.

Simple Power Analysis against RSA Based on Frequency Components (주파수 분석 기반 RSA 단순 전력 분석)

  • Jung, Ji-hyuk;Yoon, Ji-Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This paper proposes to automate the process of predicting crypto-operations from the power signal generated in RSA decoding process by frequency analysis and K-means algorithm. RSA decoding process is divided into square and multiply operation, and if we can predict the type of operations over time, we will know the RSA key value. After converting the power signal generated in the process of decoding into two-dimensional frequency signal, this paper used K-means algorithm to classify the frequency vector according to the type of operation. these classified frequency vector were used to predict the types of operations.

Classification of Gripping Movement in Daily Life Using EMG-based Spider Chart and Deep Learning (근전도 기반의 Spider Chart와 딥러닝을 활용한 일상생활 잡기 손동작 분류)

  • Lee, Seong Mun;Pi, Sheung Hoon;Han, Seung Ho;Jo, Yong Un;Oh, Do Chang
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • In this paper, we propose a pre-processing method that converts to Spider Chart image data for classification of gripping movement using EMG (electromyography) sensors and Convolution Neural Networks (CNN) deep learning. First, raw data for six hand gestures are extracted from five test subjects using an 8-channel armband and converted into Spider Chart data of octagonal shapes, which are divided into several sliding windows and are learned. In classifying six hand gestures, the classification performance is compared with the proposed pre-processing method and the existing methods. Deep learning was performed on the dataset by dividing 70% of the total into training, 15% as testing, and 15% as validation. For system performance evaluation, five cross-validations were applied by dividing 80% of the entire dataset by training and 20% by testing. The proposed method generates 97% and 94.54% in cross-validation and general tests, respectively, using the Spider Chart preprocessing, which was better results than the conventional methods.

Fault-related Landforms and Geomorphological Processes Around Ungchon-Ungsang Areas in the Middle Part of the Dongrae Fault (동래 단층 중부 지역 웅촌-웅상 일대의 단층 지형과 지형 발달)

  • Lee, Gwang-Ryul;Park, Chung-Sun;Shin, Jae Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • This study analyzed the distribution of fluvial landforms, fault-related geomorphic features and lineaments around the area of Ungchon-Ungsang in the Dongrae Fault, and discusses the charateristics of geomorphic development based on those. As a result, the NE-SW lineaments are predominantly developed in many numbers within the study area, and the NW-SE or N-S secondary lineaments are developed induced by multiple deformation with the Yangsan Fault. Geomorphologically, the early tectonic history of the Ungchon-Ungsang basin is largely divided into three stages ; 1) the Tertiary fault activity and formation of fracture zone, 2) development of erosional basin, 3) local crustal movements and development of fault-related topography. It is assumed that alluvial fans, deflected channel and stream piracy were formed by local tectonic movements related to faultings during the Quaternary.

Block-based Self-organizing TDMA for Reliable VDES in SANETs

  • Sol-Bee Lee;Jung-Hyok Kwon;Bu-Young Kim;Woo-Seong Shim;Dongwan Kim;Eui-Jik Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.511-527
    • /
    • 2024
  • This paper proposes a block-based self-organizing time-division multiple access (BSO-TDMA) protocol for very high frequency (VHF) data exchange system (VDES) in shipborne ad-hoc networks (SANETs). The BSO-TDMA reduces the collisions caused by the simultaneous transmission of automatic identification system (AIS) messages by uniformly allocating channel resources using a block-wise frame. For this purpose, the BSO-TDMA includes two functional operations: (1) frame configuration and (2) slot allocation. The first operation consists of block division and block selection. A frame is divided into multiple blocks, each consisting of fixed-size subblocks, by using the reporting interval (RI) of the ship. Then, the ship selects one of the subblocks within a block by considering the number of occupied slots for each subblock. The second operation allocates the slots within the selected subblock for transmitting AIS messages. First, one of the unoccupied slots within the selected subblock is allocated for the periodic transmission of position reports. Next, to transmit various types of AIS messages, an unoccupied slot is randomly selected from candidate slots located around the previously allocated slot. Experimental simulations are conducted to evaluate the performance of BSO-TDMA. The results show that BSO-TDMA has better performance than that of the existing SOTDMA.

Analysis on the Effects and Influences of Mindfulness Based Breathing and Body Scan for Elderly Women's Attentive Concentration (마음챙김 호흡과 신체이완이 여성노인의 주의집중력에 미치는 영향 분석)

  • Kim, Yun-Keum;Yi, Seon-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.173-179
    • /
    • 2015
  • This study is analized with how Mindfulness Based Breathing and Body Scan influences to elderly women's attentive concentration measured by 2-channel system EEG(Electroencephalogram) which method is objectively and determinately. The subjects in this study are 60 aged over 65years of elderly women in K city, who were divided into two groups; such as 30 of the experimental group and 30 of the control group checked by EEG before and after the treatment. The study started from March to July in 2013. The treatment was conducted by ones a week, 60minutes a time for 16 weeks. The result in experimental group is indicated as followed. The Attention Quotient Lt(69.61/70.85, p<.024) showed higher score after treatment, and Attention Quotient Rate Lt(4.22/3.75, p<.037), Attention Quotient Rate Rt(4.29/3.70, p<.019) did show statistically lower score after treatment. Attention Quotient is shown attentive concentration and awareness in the brain. Therefore, Mindfulness Based Breathing and Body Scan is proved the value and efficiency for activating elderly women's attentive concentration by a way of practical using in neuroscience.

Language performance analysis based on multi-dimensional verbal short-term memories in patients with conduction aphasia (다차원 구어 단기기억에 따른 전도 실어증 환자의 언어수행력 분석)

  • Ha, Ji-Wan;Hwang, Yu Mi;Pyun, Sung-Bom
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.4
    • /
    • pp.425-455
    • /
    • 2012
  • Multi-dimensional verbal short-term memory mechanisms are largely divided into the phonological channel and the lexical-semantic channel. The former is called phonological short-term memory and the latter is called semantic short-term memory. Phonological short-term memory is further segmented into the phonological input buffer and the phonological output buffer. In this study, the language performance of each of three patients with similar levels of conduction aphasia was analyzed in terms of multi-dimensional verbal short-term memory. To this end, three patients with conduction aphasia were instructed to perform four different aspects of language tasks that are spontaneous speaking, repetition, spontaneous writing, and dictation in both word and sentence level. Moreover, the patients' phonological memories and semantic short-term memories were evaluated using digit span tests and verbal learning tests. As a result, the three subjects exhibited various types of performances and error responses in the four aspects of language tests, and the short-term memory tests also did not produce identical results. The language performance of three patients with conduction aphasia can be explained according to whether the defects occurred in the semantic short-term memory, phonological input buffer and/or phonological output buffer. In this study, the relations between language and multi-dimensional verbal short-term memory were discussed based on the results of language tests and short-term memory tests in patients with conduction aphasia.

  • PDF

Development of High Energy Particle Detector for the Study of Space Radiation Storm

  • Jo, Gyeong-Bok;Sohn, Jongdae;Choi, Cheong Rim;Yi, Yu;Min, Kyoung-Wook;Kang, Suk-Bin;Na, Go Woon;Shin, Goo-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.277-283
    • /
    • 2014
  • Next Generation Small Satellite-1 (NEXTSat-1) is scheduled to launch in 2017 and Instruments for the Study of Space Storm (ISSS) is planned to be onboard the NEXTSat-1. High Energy Particle Detector (HEPD) is one of the equipment comprising ISSS and the main objective of HEPD is to measure the high energy particles streaming into the Earth radiation belt during the event of a space storm, especially, electrons and protons, to obtain the flux information of those particles. For the design of HEPD, the Geometrical Factor was calculated to be 0.05 to be consistent with the targets of measurement and the structure of telescope with field of view of $33.4^{\circ}$ was designed using this factor. In order to decide the thickness of the detector sensor and the classification of the detection channels, a simulation was performed using GEANT4. Based on the simulation results, two silicon detectors with 1 mm thickness were selected and the aluminum foil of 0.05 mm is placed right in front of the silicon detectors to shield low energy particles. The detection channels are divided into an electron channel and two proton channels based on the measured LET of the particle. If the measured LET is less than 0.8 MeV, the particle belongs to the electron channel, otherwise it belongs to proton channels. HEPD is installed in the direction of $0^{\circ}$, $45^{\circ}$, $90^{\circ}$ against the along-track of a satellite to enable the efficient measurement of high energy particles. HEPD detects electrons with the energy of 0.1 MeV to several MeV and protons with the energy of more than a few MeV. Thus, the study on the dynamic mechanism of these particles in the Earth radiation belt will be performed.

Study for improving attack Complexity against RSA Collision Analysis (RSA 충돌 분석 공격 복잡도 향상을 위한 연구)

  • Sim, Bo-Youn;Won, Yoo-Seung;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.261-270
    • /
    • 2015
  • In information security devices, such as Smart Cards, vulnerabilities of the RSA algorithm which is used to protect the data were found in the Side Channel Analysis. The RSA is especially vulnerable to Power Analysis which uses power consumption when the algorithm is working. Typically Power Analysis is divided into SPA(Simple Power Analysis) and DPA(Differential Power Analysis). On top of this, there is a CA(Collision Analysis) which is a very powerful attack. CA makes it possible to attack using a single waveform, even if the algorithm is designed to secure against SPA and DPA. So Message blinding, which applies the window method, was considered as a countermeasure. But, this method does not provide sufficient safety when the window size is small. Therefore, in this paper, we propose a new countermeasure that provides higher safety against CA. Our countermeasure is a combination of message and exponent blinding which is applied to the window method. In addition, through experiments, we have shown that our countermeasure provides approximately 124% higher attack complexity when the window size is small. Thus it can provide higher safety against CA.