This paper suggests heuristic algorithm with polynomial time complexity for rigging elections problem that can be obtain the optimal solution using linear programming. The proposed algorithm transforms the given problem into adjacency graph. Then, we divide vertices V into two set W and D. The set W contains majority distinct and the set D contains minority area. This algorithm applies divide-and-conquer method that the minority area D is include into majority distinct W. While this algorithm using simple rule, that can be obtains the optimal solution equal to linear programing for experimental data. This paper shows polynomial time solution finding rule potential in rigging elections problem.
This paper proposes a new stereo matching algorithm using both the divide-and-conquer method and the DSI(Disparity Space Image) technique. Firstly, we find salient feature points on the each scanline of the left image and find the corresponding feature point at the right image. Then the problem of a scanline is divided into several subproblems. By this way, matching of the subintervals is implemented by using the DSI technique. The DSI technique for stereo matching process is a very efficient solution to find matches and occlusions simultaneously and it is very speedy. In addition, we apply three occluding patterns to process occluded regions, as a result, we reduce mismatches at the disparity discontinuity.
분위수 회귀모형은 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 특히 커널 분위수 회귀모형은 비선형 관계식을 고려하기 위하여 양정치 커널함수(kernel function)에 의해 만들어지는 재생 커널 힐버트 공간(reproducing kernel Hilbert space)에서 비선형 조건부 분위수 함수를 추정한다. 그러나 KQR은 이차계획법으로 공식화되어 많은 계산비용을 필요로 하므로 컴퓨터 메모리 능력의 제한으로 대용량 자료의 분석은 불가능하다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분할정복(divide and conquer) 알고리즘을 활용한 KQR 추정법(DC-KQR)을 제안한다. DC-KQR은 먼저 전체 훈련자료를 몇 개의 부분집합으로 무작위로 분할(divide)한 후, 각각의 부분집합에 대하여 KQR 분위수 함수를 추정하고 이들의 산술 평균을 이용하여 최종적인 추정량으로 통합(conquer)하는 기법이다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DC-KQR의 효율적인 성능과 활용 가능성을 확인하였다.
Aiming at infrared thermal images with different buried depth defects, we study a variety of image segmentation algorithms based on the threshold to develop global search ability and the ability to find the defect area accurately. Firstly, the iterative thresholding method, the maximum entropy method, the minimum error method, the Ostu method and the minimum skewness method are applied to image segmentation of the same infrared thermal image. The study shows that the maximum entropy method and the minimum error method have strong global search capability and can simultaneously extract defects at different depths. However none of these five methods can accurately calculate the defect area at different depths. In order to solve this problem, we put forward a strategy of "divide and conquer". The infrared thermal image is divided into several local thermal maps, with each map containing only one defect, and the defect area is calculated after local image processing of the different buried defects one by one. The results show that, under the "divide and conquer" strategy, the iterative threshold method and the Ostu method have the advantage of high precision and can accurately extract the area of different defects at different depths, with an error of less than 5%.
분위수 회귀 모형은 변수에 숨겨진 복잡한 정보를 살펴보기 위한 효율적인 도구를 제공하는 장점을 바탕으로 많은 분야에서 널리 사용되고 있다. 그러나 현대의 대용량-고차원 데이터는 계산 시간 및 저장공간의 제한으로 인해 분위수 회귀 모형의 추정을 매우 어렵게 만든다. 분할-정복은 전체 데이터를 계산이 용이한 여러개의 부분집합으로 나눈 다음 각 분할에서의 요약 통계량만을 이용하여 전체 데이터의 추정량을 재구성하는 기법이다. 본 연구에서는 분할-정복 기법을 벌점화 분위수 회귀에 적용하고 베이즈 정보기준을 활용하여 변수를 선택하는 방법에 관하여 연구하였다. 제안 방법은 분할 수를 적절하게 선택하였을 때, 전체 데이터로 계산한 일반적인 분위수 회귀 추정량만큼 변수 선택의 측면에서 일관된 결과를 제공하면서 계산 속도의 측면에서 효율적이다. 이러한 제안된 방법의 장점은 시뮬레이션 데이터 및 실제 데이터 분석을 통해 확인하였다.
감정인식은 응용 분야의 다양성으로 많은 연구가 이루어지고 있는 기술이며, RGB 영상은 물론 열화상을 이용한 감정인식의 필요성도 높아지고 있다. 열화상의 경우는 RGB 영상과 비교해 조명 문제에 거의 영향을 받지 않는 장점이 있으나 낮은 해상도로 성능 높은 인식 기술을 필요로 한다. 본 논문에서는 얼굴 열화상 기반 감정인식의 성능을 높이기 위한 Divide and Conquer 기반의 CNN 학습전략을 제안하였다. 제안된 방법은 먼저 분류가 어려운 유사 감정 클래스를 confusion matrix 분석을 통해 동일 클래스 군으로 분류하도록 학습시키고, 다음으로 동일 클래스 군으로 분류된 감정 군을 실제 감정으로 다시 인식하도록 문제를 나누어서 해결하는 방법을 사용하였다. 실험을 통하여, 제안된 학습전략이 제시된 모든 감정을 하나의 CNN 모델에서 인식하는 경우보다 모든 실험에서 높은 인식성능을 보이는 것을 확인하였다.
다차원 척도법(multidimensional scaling)은 고차원의 데이터를 낮은 차원의 공간에 매핑(mapping)하여 데이터 간의 유사성을 표현하는 방법이다. 이는 주로 자질 선정 및 데이터를 시각화하는 데 이용된다. 그러한 다차원 척도법 중, 전통 다차원 척도법(classical multidimensional scaling)은 긴 수행 시간과 큰 공간을 필요로 하기 때문에 객체의 수가 많은 경우에 대해 적용하기 어렵다. 이는 유클리드 거리(Euclidean distance)에 기반한 $n{\times}n$ 상이도 행렬(dissimilarity matrix)에 대해 고유쌍 문제(eigenpair problem)를 풀어야 하기 때문이다(단, n은 객체의 개수). 따라서, n이 커질수록 수행 시간이 길어지며, 메모리 사용량 증가로 인해 적용할 수 있는 데이터 크기에 한계가 있다. 본 논문에서는 이러한 문제를 완화하기 위해 GPGPU 기술 중 하나인 CUDA와 분할-정복(divide-and-conquer)기법을 활용한 효율적인 다차원 척도법을 제안하며, 다양한 실험을 통해 제안하는 기법이 객체의 개수가 많은 경우에 매우 효율적일 수 있음을 보인다.
Commonly deep learning methods for enhancing the quality of medical images use unpaired dataset due to the impracticality of acquiring paired dataset through commercial imaging system. In this paper, we propose a supervised learning method to enhance the quality of ultrasound images. The U-net model is designed by incorporating a divide-and-conquer approach that divides and processes an image into four parts to overcome data shortage and shorten the learning time. The proposed model is trained using paired dataset consisting of 828 pairs of low-quality and high-quality images with a resolution of 512x512 pixels obtained by varying the number of channels for the same subject. Out of a total of 828 pairs of images, 684 pairs are used as the training dataset, while the remaining 144 pairs served as the test dataset. In the test results, the average Mean Squared Error (MSE) was reduced from 87.6884 in the low-quality images to 45.5108 in the restored images. Additionally, the average Peak Signal-to-Noise Ratio (PSNR) was improved from 28.7550 to 31.8063, and the average Structural Similarity Index (SSIM) was increased from 0.4755 to 0.8511, demonstrating significant enhancements in image quality.
본 논문에서는 음절이 잘 발달되어 있는 한국어에 대해서 신뢰할 수 있는 완전 자동화된 레이블링 시스템을 제안한다. 음운 및 음향학적인 정보를 최대한 이용하고 분할에러를 줄이기 위해서 조절 메카니즘의 하나로 DAC개념을 사용하여 음성을 speechlet으로 나누고 분할 된 음성 구간에 대해서 레이블링을 시도하는 DAC기반 분할알고리즘이다. HMM방법이 획일적이고 확정적인 성능을 갖는 반면 본 제안 방법은 음성학적인 특화지식을 컴포넌트로 개발 추가 계속 향상시킬 수 있는 프레임워크를 제시하고 있다는 점에서 주요 의의가 있다고 하겠다. MM과 같은 통계학적인 방법을 이용하지 않고 음운학적, 음향학적 지식만을 이용하는 새로운 방법은 수행속도와 음성학적인 특화 지식컴포넌트를 확장함에 따라 일관성이 있으며 효과적 방법으로 적용가능 할 것이다. 제안 방법을 검증하기 위하여 실험결과를 제시하였다.
일반적으로 support vector machine (SVM)은 높은 수준의 분류 정확도를 제공함으로써 다양한 분야의 분류분석에서 널리 사용되고 있다. 그러나 SVM은 최적화 계산식이 이차계획법(quadratic programming)으로 공식화되어 많은 계산 비용이 필요하므로 대용량 자료의 분류분석에는 그 사용이 제한된다. 또한 불균형 자료(imbalanced data)의 분류분석에서는 다수집단에 편향된 분류함수를 추정함으로써 대부분의 자료를 다수집단으로 분류하여 소수집단의 분류 정확도를 현저히 감소시키게 된다. 이러한 문제점들을 해결하기 위하여 본 논문에서는 다수집단을 분할(divide)하고, 소수집단을 과대추출(oversampling)하여 여러 분류함수들을 추정하고 이들을 통합(conquer)하는 DOC-SVM 분류기법을 제안한다. 제안한 DOC-SVM은 분할정복 알고리즘을 다수집단에 적용하여 SVM의 계산 효율을 향상시키고, 과대추출 알고리즘을 소수집단에 적용하여 SVM 분류함수의 편향을 줄이게 된다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DOC-SVM의 효율적인 성능과 활용 가능성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.