• 제목/요약/키워드: Divide-and-conquer method

검색결과 42건 처리시간 0.083초

A Divide-and-Conquer Algorithm for Rigging Elections Problem

  • Lee, Sang-Un
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권12호
    • /
    • pp.101-106
    • /
    • 2015
  • This paper suggests heuristic algorithm with polynomial time complexity for rigging elections problem that can be obtain the optimal solution using linear programming. The proposed algorithm transforms the given problem into adjacency graph. Then, we divide vertices V into two set W and D. The set W contains majority distinct and the set D contains minority area. This algorithm applies divide-and-conquer method that the minority area D is include into majority distinct W. While this algorithm using simple rule, that can be obtains the optimal solution equal to linear programing for experimental data. This paper shows polynomial time solution finding rule potential in rigging elections problem.

시차 공간에서 divide-and-conquer 방법을 이용한 스테레오 정합 (Stereo matching using the divide-and-conquer method in the disparity space image)

  • 이종민;김대현;윤용인;최종수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.179-182
    • /
    • 2003
  • This paper proposes a new stereo matching algorithm using both the divide-and-conquer method and the DSI(Disparity Space Image) technique. Firstly, we find salient feature points on the each scanline of the left image and find the corresponding feature point at the right image. Then the problem of a scanline is divided into several subproblems. By this way, matching of the subintervals is implemented by using the DSI technique. The DSI technique for stereo matching process is a very efficient solution to find matches and occlusions simultaneously and it is very speedy. In addition, we apply three occluding patterns to process occluded regions, as a result, we reduce mismatches at the disparity discontinuity.

  • PDF

대용량 자료의 분석을 위한 분할정복 커널 분위수 회귀모형 (Divide and conquer kernel quantile regression for massive dataset)

  • 방성완;김재오
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.569-578
    • /
    • 2020
  • 분위수 회귀모형은 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 특히 커널 분위수 회귀모형은 비선형 관계식을 고려하기 위하여 양정치 커널함수(kernel function)에 의해 만들어지는 재생 커널 힐버트 공간(reproducing kernel Hilbert space)에서 비선형 조건부 분위수 함수를 추정한다. 그러나 KQR은 이차계획법으로 공식화되어 많은 계산비용을 필요로 하므로 컴퓨터 메모리 능력의 제한으로 대용량 자료의 분석은 불가능하다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분할정복(divide and conquer) 알고리즘을 활용한 KQR 추정법(DC-KQR)을 제안한다. DC-KQR은 먼저 전체 훈련자료를 몇 개의 부분집합으로 무작위로 분할(divide)한 후, 각각의 부분집합에 대하여 KQR 분위수 함수를 추정하고 이들의 산술 평균을 이용하여 최종적인 추정량으로 통합(conquer)하는 기법이다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DC-KQR의 효율적인 성능과 활용 가능성을 확인하였다.

Accurate Detection of a Defective Area by Adopting a Divide and Conquer Strategy in Infrared Thermal Imaging Measurement

  • Jiangfei, Wang;Lihua, Yuan;Zhengguang, Zhu;Mingyuan, Yuan
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1644-1649
    • /
    • 2018
  • Aiming at infrared thermal images with different buried depth defects, we study a variety of image segmentation algorithms based on the threshold to develop global search ability and the ability to find the defect area accurately. Firstly, the iterative thresholding method, the maximum entropy method, the minimum error method, the Ostu method and the minimum skewness method are applied to image segmentation of the same infrared thermal image. The study shows that the maximum entropy method and the minimum error method have strong global search capability and can simultaneously extract defects at different depths. However none of these five methods can accurately calculate the defect area at different depths. In order to solve this problem, we put forward a strategy of "divide and conquer". The infrared thermal image is divided into several local thermal maps, with each map containing only one defect, and the defect area is calculated after local image processing of the different buried defects one by one. The results show that, under the "divide and conquer" strategy, the iterative threshold method and the Ostu method have the advantage of high precision and can accurately extract the area of different defects at different depths, with an error of less than 5%.

베이즈 정보 기준을 활용한 분할-정복 벌점화 분위수 회귀 (Model selection via Bayesian information criterion for divide-and-conquer penalized quantile regression)

  • 강종경;한석원;방성완
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.217-227
    • /
    • 2022
  • 분위수 회귀 모형은 변수에 숨겨진 복잡한 정보를 살펴보기 위한 효율적인 도구를 제공하는 장점을 바탕으로 많은 분야에서 널리 사용되고 있다. 그러나 현대의 대용량-고차원 데이터는 계산 시간 및 저장공간의 제한으로 인해 분위수 회귀 모형의 추정을 매우 어렵게 만든다. 분할-정복은 전체 데이터를 계산이 용이한 여러개의 부분집합으로 나눈 다음 각 분할에서의 요약 통계량만을 이용하여 전체 데이터의 추정량을 재구성하는 기법이다. 본 연구에서는 분할-정복 기법을 벌점화 분위수 회귀에 적용하고 베이즈 정보기준을 활용하여 변수를 선택하는 방법에 관하여 연구하였다. 제안 방법은 분할 수를 적절하게 선택하였을 때, 전체 데이터로 계산한 일반적인 분위수 회귀 추정량만큼 변수 선택의 측면에서 일관된 결과를 제공하면서 계산 속도의 측면에서 효율적이다. 이러한 제안된 방법의 장점은 시뮬레이션 데이터 및 실제 데이터 분석을 통해 확인하였다.

얼굴 열화상 기반 감정인식을 위한 CNN 학습전략 (Divide and Conquer Strategy for CNN Model in Facial Emotion Recognition based on Thermal Images)

  • 이동환;유장희
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권2호
    • /
    • pp.1-10
    • /
    • 2021
  • 감정인식은 응용 분야의 다양성으로 많은 연구가 이루어지고 있는 기술이며, RGB 영상은 물론 열화상을 이용한 감정인식의 필요성도 높아지고 있다. 열화상의 경우는 RGB 영상과 비교해 조명 문제에 거의 영향을 받지 않는 장점이 있으나 낮은 해상도로 성능 높은 인식 기술을 필요로 한다. 본 논문에서는 얼굴 열화상 기반 감정인식의 성능을 높이기 위한 Divide and Conquer 기반의 CNN 학습전략을 제안하였다. 제안된 방법은 먼저 분류가 어려운 유사 감정 클래스를 confusion matrix 분석을 통해 동일 클래스 군으로 분류하도록 학습시키고, 다음으로 동일 클래스 군으로 분류된 감정 군을 실제 감정으로 다시 인식하도록 문제를 나누어서 해결하는 방법을 사용하였다. 실험을 통하여, 제안된 학습전략이 제시된 모든 감정을 하나의 CNN 모델에서 인식하는 경우보다 모든 실험에서 높은 인식성능을 보이는 것을 확인하였다.

CUDA 및 분할-정복 기반의 효율적인 다차원 척도법 (An Efficient Multidimensional Scaling Method based on CUDA and Divide-and-Conquer)

  • 박성인;황규백
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권4호
    • /
    • pp.427-431
    • /
    • 2010
  • 다차원 척도법(multidimensional scaling)은 고차원의 데이터를 낮은 차원의 공간에 매핑(mapping)하여 데이터 간의 유사성을 표현하는 방법이다. 이는 주로 자질 선정 및 데이터를 시각화하는 데 이용된다. 그러한 다차원 척도법 중, 전통 다차원 척도법(classical multidimensional scaling)은 긴 수행 시간과 큰 공간을 필요로 하기 때문에 객체의 수가 많은 경우에 대해 적용하기 어렵다. 이는 유클리드 거리(Euclidean distance)에 기반한 $n{\times}n$ 상이도 행렬(dissimilarity matrix)에 대해 고유쌍 문제(eigenpair problem)를 풀어야 하기 때문이다(단, n은 객체의 개수). 따라서, n이 커질수록 수행 시간이 길어지며, 메모리 사용량 증가로 인해 적용할 수 있는 데이터 크기에 한계가 있다. 본 논문에서는 이러한 문제를 완화하기 위해 GPGPU 기술 중 하나인 CUDA와 분할-정복(divide-and-conquer)기법을 활용한 효율적인 다차원 척도법을 제안하며, 다양한 실험을 통해 제안하는 기법이 객체의 개수가 많은 경우에 매우 효율적일 수 있음을 보인다.

짝지어진 데이터셋을 이용한 분할-정복 U-net 기반 고화질 초음파 영상 복원 (A Divide-Conquer U-Net Based High-Quality Ultrasound Image Reconstruction Using Paired Dataset)

  • 유민하;안치영
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권3호
    • /
    • pp.118-127
    • /
    • 2024
  • Commonly deep learning methods for enhancing the quality of medical images use unpaired dataset due to the impracticality of acquiring paired dataset through commercial imaging system. In this paper, we propose a supervised learning method to enhance the quality of ultrasound images. The U-net model is designed by incorporating a divide-and-conquer approach that divides and processes an image into four parts to overcome data shortage and shorten the learning time. The proposed model is trained using paired dataset consisting of 828 pairs of low-quality and high-quality images with a resolution of 512x512 pixels obtained by varying the number of channels for the same subject. Out of a total of 828 pairs of images, 684 pairs are used as the training dataset, while the remaining 144 pairs served as the test dataset. In the test results, the average Mean Squared Error (MSE) was reduced from 87.6884 in the low-quality images to 45.5108 in the restored images. Additionally, the average Peak Signal-to-Noise Ratio (PSNR) was improved from 28.7550 to 31.8063, and the average Structural Similarity Index (SSIM) was increased from 0.4755 to 0.8511, demonstrating significant enhancements in image quality.

음성학적 지식과 DAC 기반 분할 알고리즘 (Phonetic Acoustic Knowledge and Divide And Conquer Based Segmentation Algorithm)

  • 구찬모;왕지남
    • 정보처리학회논문지B
    • /
    • 제9B권2호
    • /
    • pp.215-222
    • /
    • 2002
  • 본 논문에서는 음절이 잘 발달되어 있는 한국어에 대해서 신뢰할 수 있는 완전 자동화된 레이블링 시스템을 제안한다. 음운 및 음향학적인 정보를 최대한 이용하고 분할에러를 줄이기 위해서 조절 메카니즘의 하나로 DAC개념을 사용하여 음성을 speechlet으로 나누고 분할 된 음성 구간에 대해서 레이블링을 시도하는 DAC기반 분할알고리즘이다. HMM방법이 획일적이고 확정적인 성능을 갖는 반면 본 제안 방법은 음성학적인 특화지식을 컴포넌트로 개발 추가 계속 향상시킬 수 있는 프레임워크를 제시하고 있다는 점에서 주요 의의가 있다고 하겠다. MM과 같은 통계학적인 방법을 이용하지 않고 음운학적, 음향학적 지식만을 이용하는 새로운 방법은 수행속도와 음성학적인 특화 지식컴포넌트를 확장함에 따라 일관성이 있으며 효과적 방법으로 적용가능 할 것이다. 제안 방법을 검증하기 위하여 실험결과를 제시하였다.

불균형의 대용량 범주형 자료에 대한 분할-과대추출 정복 서포트 벡터 머신 (A divide-oversampling and conquer algorithm based support vector machine for massive and highly imbalanced data)

  • 방성완;김재오
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.177-188
    • /
    • 2022
  • 일반적으로 support vector machine (SVM)은 높은 수준의 분류 정확도를 제공함으로써 다양한 분야의 분류분석에서 널리 사용되고 있다. 그러나 SVM은 최적화 계산식이 이차계획법(quadratic programming)으로 공식화되어 많은 계산 비용이 필요하므로 대용량 자료의 분류분석에는 그 사용이 제한된다. 또한 불균형 자료(imbalanced data)의 분류분석에서는 다수집단에 편향된 분류함수를 추정함으로써 대부분의 자료를 다수집단으로 분류하여 소수집단의 분류 정확도를 현저히 감소시키게 된다. 이러한 문제점들을 해결하기 위하여 본 논문에서는 다수집단을 분할(divide)하고, 소수집단을 과대추출(oversampling)하여 여러 분류함수들을 추정하고 이들을 통합(conquer)하는 DOC-SVM 분류기법을 제안한다. 제안한 DOC-SVM은 분할정복 알고리즘을 다수집단에 적용하여 SVM의 계산 효율을 향상시키고, 과대추출 알고리즘을 소수집단에 적용하여 SVM 분류함수의 편향을 줄이게 된다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DOC-SVM의 효율적인 성능과 활용 가능성을 확인하였다.