• Title/Summary/Keyword: Diversity Beamforming

Search Result 58, Processing Time 0.025 seconds

Beamforming Algorithm for Smart Antenna System in Multi-mode Environment (다중 모드 지원이 가능한 스마트 안테나 시스템의 빔형성 알고리즘)

  • Ahn, Sung-Soo;Kim, Min-Soo
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.42-49
    • /
    • 2008
  • This paper proposes a new beamforming algorithm to select beamforming gain or/and diversity gain in CDMA2000, W-CDMA, W-LAN channel according to signal environment on the multipath. In this paper, we present the criteria to obtain deversity gain at any point that based on quantized experimental value. Proposed method proposes represents a performance better than conventional algorithm adopting the largest two eigenvector when angle spread is exit. From the results of performance analysis through various simulation, it is confirmed that proposed method is far superior about $3{\sim}4$ times compare to conventional method in signal environment.

Gradient On-Off Beamforming Algorithm Based On Eigen-Space Method For a Smart Antenna In IS-2000 1X Signal Environment (IS-2000 1X 신호 환경하에서의 고유공간 방법에 근간한 그래디언트 온-오프 빔평성 알고리즘)

  • 이정자;이원철;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.949-957
    • /
    • 2003
  • This paper presents a gradient ON-OFF algorithm of which the performance is very robust even when the angle spread increases in the mobile communication environments. The proposed method getting the diversity gain by utilizing the primary and secondary eigenvector, which corresponds to the largest and the second largest eigenvalue of the autocovariance matrix of the received signal vector, outperforms the method which just utilizes one eigenvector. By applying the proposed method to IS-2000 1X signal environments, it is observed that the proposed method shows excellent performance compared to a typical beamforming method using just one eigenvector, which considerably degrades the receiving performance as the angle spread increases.

Cooperative Opportunistic Beamforming for OCI Mitigation in Correlated Multi-User MISO Cellular System (채널 상관도가 존재하는 다중 사용자 MISO 환경에서 인접 셀 간섭 제거를 위한 협력 기회적 빔포밍 기법)

  • Cho, Hee-Nam;Lee, Jin-Woo;Lee, Yong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.289-290
    • /
    • 2008
  • We consider cooperative opportunistic beamforming that can mitigate the other cell interference (OCI) in correlated multi-user multiple-input single-output (MISO) cellular environments. By only exploiting the spatial channel information of adjacent cells, the proposed scheme generates the cooperative random beam that statistically avoids the OCI from adjacent cells. Each cell selects a user in an opportunistic manner. Thus, the proposed scheme can simultaneously achieve the multi-user diversity (MUD) gain and the OCI avoidance gain.

  • PDF

Spectrum Sharing SDMA with Limited Feedback: Throughput Analysis

  • Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3237-3256
    • /
    • 2012
  • In the context of effective usage of a scarce spectrum resource, emerging wireless communication standards will demand spectrum sharing with existing systems as well as multiple access with higher spectral efficiency. We mathematically analyze the sum throughput of a spectrum sharing space-division multiple access (SDMA) system, which forms a transmit null in the direction of other coexisting systems while satisfying orthogonal beamforming constraints. For a large number of users N, the SDMA throughput scales as log N at high signal-to-noise ratio (SNR) ((J-1) loglog N at normal SNR), where J is the number of transmit antennas. This indicates that multiplexing gain of the spectrum sharing SDMA is $\frac{J-1}{J}$ times less than that of the non-spectrum sharing SDMA only using orthogonal beamforming, whereas no loss in multiuser diversity gain. Although the spectrum sharing SDMA always has lower throughput compared to the non-spectrum sharing SDMA in the non-coexistence scenario, it offers an intriguing opportunity to reuse spectrum already allocated to other coexisting systems.

Secrecy Analysis of Amplify-and-Forward Relay Networks with Beamforming

  • Chen, Pu;Ouyang, Jian;Zhu, Wei-Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5049-5062
    • /
    • 2016
  • This paper analyzes the secrecy performance of an amplify-and-forward (AF) relay network, where a multi-antenna eavesdropper attempts to overhear the transmitted message from a multi-antenna source to a multi-antenna destination with a single antenna relay. Firstly, we derive the approximate analytical expressions for the secrecy outage probability (SOP) and average secrecy rate (ASR) of the relay network. Then, asymptotic expressions of SOP and ASR at high main-to-eavesdropper ratio (MER) are also provided to reveal the diversity gain of the secure communication. Finally, numerical results are given to verify the theoretical analysis and show the effect of the number of antennas in the considered relay network.

Performance Improvement of MIMO-OFDMA system with beamformer

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • In this paper, we propose the adaptive beamforming algorithm for the MIMO (Multi-Input Multi-Out)-OFDMA(Orthogonal Frequency Division Multiplexing Access)system to improve the performance. The performance of MIMO-OFDMA systems is greatly decreased in the wireless channel environment with multiusers, because the received signals are much distorted by a cochannel interference (CCI) during the space-time decoding. The proposed approach can track the DOA of each signal from the multiple antennas of the desired user without being greatly dependent on the impinging angle. And beams are directed toward the multiple transmitters of the desired user while null beams are directed toward interference directions. Therefore, we can can effectively cancel CCI and mitigate the impairment of delay spread while preserving the STC(space time code) diversity. BER performance improvement is investigated through computer simulation by applying the proposed approach to MIMO-OFDMA system in a multipath fading channel with CCI.

TEBS Technique with Using STBC for MISO Systems

  • Kim, Hong-Cheol;Park, Jae-Hyung;Lee, Won-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.140-145
    • /
    • 2002
  • This paper introduces the downlink Eigen-beamformer with Space-Time Block Code (STBC)[1,2] employed on the MISO (Multiple Input Multiple Output) systems. The proposed scheme is acquired both transmit diversity gain from STBC and beamforming gain from Eigen-beamformer. In general, it is well described that the diversity gain be maximized when channel parameters associated to fingers are mutually independent. Major role of utilizing Eigen-beamformer is to enforce channel parameters being uncorrelated. According to this, the proposed STBC combined with Eigen-beamformer on the downlink significantly improves its performance under the spatially correlated channel. Simulation results are accomplished under three distinct channels conditioned with varying the degree of their correlations. The result indicates that our proposed scheme is good performance in spatially correlated channel.

Capacity Analysis of Smart Antenna Systems with Macro Diversity (스마트 안테나를 적용한 기지국 다이버시티에 의한 셀의 용량분석 연구)

  • 이명원;한진규;육종관;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.212-219
    • /
    • 2002
  • In this paper, how to perform beamforming and power control for the systems with smart antennas is introduced in consideration of macro-diversity, and cell capacity of the systems is analyzed. In the result, as the number of the base stations linked to mobiles increases, capacity increases in the reverse link. On the other hand, macro diversity causes capacity loss in forward link. It is expected that the result of this work may be used in designing the next generation mobile communication systems for high quality services such as multi media data and wireless internet etc.

Joint Destination-Relay Selection and Antenna Mode Selection in Full-Duplex Relay Network

  • Tang, Yanan;Gao, Hui;Su, Xin;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2831-2847
    • /
    • 2017
  • In this paper, a joint destination-relay selection and antenna mode selection scheme for full-duplex (FD) relay network is investigated, which consists of one source node, N FD amplify-and-forward (AF) relays and M destination nodes. Multiple antennas are configured at the source node, and beamforming technique is adopted. Two antennas are employed at each relay, one for receiving and the other for transmitting. Only one antenna is equipped at each destination node. In the proposed scheme, the best destination node is firstly selected according to the direct links between the source node and destination nodes. Then the transmit and receive mode of two antennas at each relay is adaptively selected based on the relaying link condition. Meanwhile, the best relay with the optimal Tx/Rx antenna configuration is selected to forward the signals. To characterize the performance of the proposed scheme, the closed-form expression of the outage probability is derived; meanwhile, the simple asymptotic expressions are also obtained. Our analysis shows that the proposed scheme obtains the benefits of multi-relay diversity and multi-destination diversity. Moreover, extra space diversity in the medium SNR region can be achieved due to the antenna selection at the relay. Finally, Monte-Carlo simulations are provided to consolidate the analytical results, and show the effectiveness of the proposed scheme.

The OFDMA/TDD System based on Transmit and Receive Beamforming Utilizing the Preamble for Receive Beamforming (수신 빔형성 프리앰블을 이용한 송수신 빔형성 기반 OFDMA/TDD 시스템)

  • Heo, Joo;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.749-754
    • /
    • 2005
  • It is well-known that mobile communication systems are usually limited in their performance and capacity by three major impairments, which are multipath fading, delay spread and co-channel interference (CCI). OFDMA (OFDM-FDMA) system can cope with the multipath fading and delay spread easily due to the beneficial properties of OmM technology. Though OFDMA scheme avoids intra-cell interference using the orthogonality among subcarriers, the scheme contains difficulty of reducing co-channel interference. Therefore, in this paper, adaptive antenna techniques are deployed into OFDMA/TDD system to minimize the co-channel interference induced by adjacent cells and to enhance the uplink performance. For the improvement of downlink performance, we apply TxAA (Transmit Adaptive Array), a kind of transmit diversity technique, utilizing preamble symbols for training antenna may into OFDMA/TDD transmitter side. Simulation results show that the uplink and downlink performance under multipath Rayleigh fading channel improved 9dB and 7dB each compared with the case of single antenna system at target BER $10^{-3}$ .