• Title/Summary/Keyword: Disulfide bond formation

Search Result 37, Processing Time 0.028 seconds

PDI-like Enzyme in Human Follicular Fluid Converts 72 kDa Gelatinase into GA110 (사람 난포액에 존재하는 72 kDa Geletinase로부터 GA110을 만드는 PDI-like PDI-like Enzyme)

  • Kim Jisoo;Kim Haekwon
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 2003
  • Previously, we discovered a new MMP-2 isoform GA110, of which appearance in human follicular fluid(FF) and serum was increased by EDTA. The present study was conducted to investigate how GAI 10 can appear by EDTA. To examine possible involvement of protein disulfide isomerase(PDI), an enzyme responsible for the dimerization of protein via disulfide formation, effect of PDI inhibitor on the appearance of GA110 by EDTA was investigated. When PDI inhibitor added to FF before EDTA treatment, the gelatinolytic activity of GA110 was abolished in a concentration dependent manner. By contrast, the activity of 72 kDa gelatinase increased. However, the PDI inhibitor added to FF after EDTA treatment, the gelatinolytic activity of GA110 was unaffected. To find out the nature of the enzyme which converts 72 kDa gelatinase into GAI 10, chromatographic separation method of FF proteins was done. Using hydroxyapatite column, fractions rich in 72 kDa gelatinase were isolated and pooled. By using this pool as substrate for the 72 kDa converting enzyme, protein fractions containing the converting activity were obtained from chromatographic separation of FF onto glutathione sepharose fast flow column. When immunoblotting was performed on this enzymatically active protein fractions against polyclonal anti-PDI antibody, distinct immunoreactivity was observed, although appeared in smaller molecular weight region. Based on these observations, it is suggested that the appearance of GAI 10 in FF by EDTA treatment could be due to an activation of PDI-like enzyme, which dimerizes 72 kDa gelatinase into GAI 10 via the formation of disulfide bond between molecules.

  • PDF

Effect of Agarase Signal Peptide from Agarivorans albus YKW-34 on Protein Secretion in Escherichia coli (대장균에서 단백질 분비에 대한 Agarivorans albus YKW-34의 Agarase 시그널펩티드의 효과)

  • Lee, Joo-Young;Song, Dae-Geun;Son, Jin-Ki;Pan, Cheol-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.2
    • /
    • pp.105-107
    • /
    • 2010
  • To overcome the limitation of E. coli expression system such as inclusion body formation and disulfide bond failure, we tried to express the heterologous protein as a secreted form. We adopted agarase signal peptide (ASP; 23 amino acid residues) from Agarivorans albus YKW-34 which is one of marine bacteia. When we used ASP to express $\beta$-agarase, about 42% activity was detected in media.

Molecular Cloning of Red Seabream, Pagrus major Somatolactin cDNA and Its Expression in Escherichia coli

  • Munasinghe, Helani;Koh, Soon-Mi;Lee, Jehee
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.165-170
    • /
    • 2003
  • Isolation, cloning and sequencing of red seabream (Pagrus major) somatolactin (rsbSL) cDNA from pituitary gland revealed an open reading frame of 693 bp coding for a pre-growth hormone of 231 amino acids with a 22 amino acid putative signal peptide. Deduced amino acid sequence showed that there was one possible N-glycosylation site at Asn$^{145}$ and seven Cys residues (Cys$_{29}$ , Cys$^{39}$ , Cys$^{66}$ , Cys$^{89}$ , Cys$^{205}$ , Cys$^{222}$ , Cys$^{230}$ ). Except Cys$^{66}$ , others may be involved in disulfide bond formation. The rsbSL presented a 93% amino acid sequence identity with the SL of gilthead seabream (Sparus aurata) and contained the conserved hormone domain region. Expression of rsbSL in E. coli (BL2l) cells and gel analysis revealed a higher molecular weight for rsbSL than expected theoretically, implying posttranslational modifications.

Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers

  • Ito, Eisuke;Gang, Hun-Gu;Ito, Hiromi;Hara, Masahiko;No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.219-219
    • /
    • 2012
  • The formation and thermal desorption behaviors of octanethiol (OT) SAMs on single crystalline Au (111) and polycrystalline Au, Ag, and Cu substrates were examined by X-ray photoelectron microscopy (XPS), thermal desorption spectroscopy (TDS), and contact angle (CA) measurements. XPS and CA measurements revealed that the adsorption of octanethiol (OT) molecules on these metals led to the formation of chemisorbed self-assembled monolayers (SAMs). Three main desorption fragments for dioctyl disulfide (C8SSC8+, dimer), octanethiolate (C8S+), and octanethiol (C8SH+) were monitored using TDS to understand the effects of surface morphology and the nature of metal substrates on the thermal desorption behavior of alkanethiols. TDS measurements showed that a sharp dimer peak with a very strong intensity on single crystalline Au (111) surface was dominantly observed at 370 K, whereas a broad peak on the polycrystalline Au surface was observed at 405 K. On the other hand, desorption behaviors of octanethiolates and octanethiols were quite similar. We concluded that substrate morphology strongly affects the dimerization process of alkanethiolates on Au surfaces. We also found that desorption intensity of the dimer is in the order of Au>>Ag>Cu, suggesting that the dimerization process occurs efficiently when the sulfur-metal bond has a more covalent character (Au) rather than an ionic character (Ag and Cu).

  • PDF

End-to-end Structural Restriction of α-Synuclein and Its Influence on Amyloid Fibril Formation

  • Hong, Chul-Suk;Park, Jae Hyung;Choe, Young-Jun;Paik, Seung R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3542-3546
    • /
    • 2014
  • Relationship between molecular freedom of amyloidogenic protein and its self-assembly into amyloid fibrils has been evaluated with ${\alpha}$-synuclein, an intrinsically unfolded protein related to Parkinson's disease, by restricting its structural plasticity through an end-to-end disulfide bond formation between two newly introduced cysteine residues on the N- and C-termini. Although the resulting circular form of ${\alpha}$-synuclein exhibited an impaired fibrillation propensity, the restriction did not completely block the protein's interactive core since co-incubation with wild-type ${\alpha}$-synuclein dramatically facilitated the fibrillation by producing distinctive forms of amyloid fibrils. The suppressed fibrillation propensity was instantly restored as the structural restriction was unleashed with ${\beta}$-mercaptoethanol. Conformational flexibility of the accreting amyloidogenic protein to pre-existing seeds has been demonstrated to be critical for fibrillar extension process by exerting structural adjustment to a complementary structure for the assembly.

Interaction between Whey and Soybean Proteins (유청 및 대두 단백질의 상호작용)

  • Shon, Dong-Hwa;Lee, Hyong-Joo
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.361-370
    • /
    • 1988
  • To investigate the interaction between whey and soybean protein, thermal changes of component proteins were analyzed by column chromatography and gel electrophoresis. In the Sephadex G-200 chromatography of the mixture treated at above $80^{\circ}C$, the amount of low molecular weight proteins and high molecular aggregates were increased. This implicated that dissociation of 1ls globulin into subunits and the formation of soluble aggregates between these subunits and whey proteins that contain thiol and disulfide groups. These interaction between soy proteins and ${\beta}-lactoglobulin$, ${\alpha}-lactalbumin$, and proteose-peptone 3 were confirmed by gel electrophoresis. Bovine serum albumin, Immunoglobulin-G(H), Lactoferrin, 1ls-subunits(basic and acidic), and subunit of 7s globulin were also considered to interact each other depending on the condition of the salt solutions.

  • PDF

Synthesis of Insulin A (1-21) Chain and Their Assembly on a Polymer-Bound ${\alpha}$-Methylphenacylester Linkage (2-브로모프로피오닐화된 수지를 이용한 인슐린 A (1-21) 사슬의 합성)

  • Soon Uoong Koock;Nam-Joo Hong
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.457-463
    • /
    • 1987
  • The total synthesis of insulin A chain (1-21) with properly protected sulfhdryl groups of three cysteins for the correct intra and inter disulfide bond formation has been accomplished on 2-bromopropionylated 2% DVB-styreneresin support employing manually operated rotary vessel. The sulfhydryl groups of cysteins were protected with acetamidomethyl, benzyl, and benzhydryl respectively. Glutamine and asparagine were attached to the peptide chain by active ester coupling, all other amino acids were coupled with DCC/HOBT. The synthesized peptide was purified by DEAE Sephadex A-25 and gel filtration Sephadex LH-20. The final product was found to be homogeneous by HPLC, electrophoresis, and amino acid analysis. The overall yield of the pure isolated peptide was 6%.

  • PDF

The Effect of Oxidation/Reduction of Sulfide Mineral on Its Recovery by Flotation (산화(酸化)/환원(還元) 조건(條件)에 따른 황화광물(黃化鑛物)의 부유선별(浮游選別)에 의한 회수성(回收性) 변화(變化))

  • Kim, Dong-Su
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.12-16
    • /
    • 2007
  • The influence of oxidation on the floatability of sulfide minerals contained in mine failings has been investigated employing chalcopyrite as a target material. The critical surface tension of chalcopyrite was estimated to be about 15.5 dyne/cm based on Zisman plot and the floatability of chalcopyrite was observed to increase with the concentration of collector. The enhanced float-ability of chalcopyrite at its initial stage of oxidation was considered to be due to the transformation of disulfide to elemental sulfur and the decrease in its floatability at further oxidation was presumably caused by the formation of sulfate and/or disulfur trioxide from elemental sulfur. When the oxidized chalcopyrite was reduced, its floatability was increased and the variation of the critical surface tension of chalcopyrite according to tile oxidation/reduction was interpreted by an energy diagram constructed by different bond energies between atoms.

Production and Characterization of Keratinolytic Proteases by a Chicken Feather-Degrading Thermophilic Strain, Thermoactinomyces sp. YT06

  • Wang, Lin;Qian, Yuting;Cao, Yun;Huang, Ying;Chang, Zhizhou;Huang, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2190-2198
    • /
    • 2017
  • Thermoactinomyces sp. strain YT06 was isolated from poultry compost and observed to degrade integral chicken feathers completely at $60^{\circ}C$, resulting in the formation of 3.24 mg/ml of free amino acids from 50 ml of culture containing 10 g/l chicken feathers. Strain YT06 could grow and secrete keratinase using feather as the only carbon and nitrogen sources without other supplement, but complementation of 10 g/l sucrose and 4 g/l $NaNO_3$ increased the production of the keratinolytic enzyme. The maximum protease activity obtained was 110 U/ml and for keratinase was 42 U/ml. The keratinase maintained active status over a broad pH (pH 8-11) and temperature ($60-75^{\circ}C$). It was inhibited by serine protease inhibitors and most metal ions; however, it could be stimulated by $Mn^{2+}$ and the surfactant Tween-20. A reductive agent (${\beta}$-mercaptoethanol) was observed to cleave the disulfide bond of keratin and improve the access of the enzyme to the keratinaceous substrate. Zymogram analysis showed that strain YT06 primarily secreted keratinase with a molecular mass of approximately 35 kDa. The active band was assessed by MALDI-TOF mass spectrometry and was observed to be completely identical to an alkaline serine protease from Thermoactinomyces sp. Gus2-1. Thermoactinomyces sp. strain YT06 shows great potential as a novel candidate in enzymatic processing of hard-to-degrade proteins into high-value products, such as keratinous wastes.

Direct ROS Scavenging Activity of CueP from Salmonella enterica serovar Typhimurium

  • Yoon, Bo-Young;Yeom, Ji-Hyun;Kim, Jin-Sik;Um, Si-Hyeon;Jo, Inseong;Lee, Kangseok;Kim, Yong-Hak;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.100-108
    • /
    • 2014
  • Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu,Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.