• Title/Summary/Keyword: Disturbance suppression

Search Result 83, Processing Time 0.024 seconds

Shape Design of Frame Structures for Vibration Suppression and Weight Reduction

  • Hase, Miyahito;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2246-2251
    • /
    • 2003
  • This paper proposes shape design of frame structures for vibration suppression and weight reduction. The $H_{\infty}$ norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto optimal solutions to the two-objective design problem, a number of linear combinations of the $H_{\infty}$ norm and the total weight of the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is defined by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function satisfies the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical examples are presented to demonstrate the effectiveness of the proposed design method.

  • PDF

Effects of Attached Masses on the Instability and Vibration Suppression of a Flexible Pipe Conveying Fluid (유체유동에 의한 유연한 파이프의 불안정과 진동억제에 미치는 부가질량의 영향)

  • 류봉조;정승호;이종원
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.280-290
    • /
    • 2000
  • The paper deals with vibration suppression and dynamic stability of a vertical cantilevered pipe conveying an internal flowing fluid and having an attached mass. Real pipe systems may have some valves or mechanical attached parts, which can be regarded as attached lumped masses. The effect of attached mass on the dynamic stability of a cantilevered pipe conveying fluid is investigated for different locations and magnitudes of the attached mass. The flow rate was controlled through motor pump output and measured by a flow meter. Experimental resutls in the vicinity of flutter fluid velocity were compared with theoretical predictions. It has been found that the experimental results are in substantial agreement with the theoretical predictions. Finally, in order to suppress the vibration of the pipe subjected to a disturbance, and control technique using an internal flowing fluid is introduced.

  • PDF

Robust Control using Observer for Brushless DC Motor (BLDC 모터의 관측자를 이용한 강인 제어)

  • Yu, Byung-Sam;Shin, Doo-Jin;Park, Eik-Dong;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.552-554
    • /
    • 1999
  • In this paper, a robust control system with the disturbance observer is proposed for BLDC servo system. The overall control system consists of the speed controller which is implemented with PI controller and the disturbance observer with free parameters. The proposed control system is designed the command input response and the closed loop characteristics independently by using two-degrees-of-freedom concept, so it can improve the closed loop characteristics with no influence on the command input response. The effective suppression of disturbance with the observer improves the characteristics of the closed loop of the system. And also, by fluting the bandwidth of free parameters, measurement noise is considered. To verify the better performance of the proposed control system than that of the conventional PI controllers, the performance of the controller is analyzed theoretically and some simulation results are presented.

  • PDF

Vibration Suppression Method in Two-Mass System Based on Active Disturbance Rejection Control (능동 외란 제거 제어를 이용한 이관성 시스템의 진동 저감 기법)

  • Kim, Bum-Jin;Yoon, Young-Doo;Cho, Byung-Guek;Hong, Chanook
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.7-9
    • /
    • 2019
  • 이 논문은 이관성 시스템에서 능동 외란 제거 제어(Active Disturbance Rejection Control, ADRC) 기반의 진동 저감 알고리즘을 제안한다. 제안한 방법은 축소 차원 ADRC를 기반으로 구성하였다. ADRC 이론에 기반한 제어 이론은 전체 토크 중 전동기 측의 관성 모멘트에 대한 토크를 제외한 모든 토크를 외란 성분이라 설정한다. 외란에 대한 가속도 성분을 전체 외란(Total Disturbance)이라고 설정하고, 이를 추정하여 보상한다. 축소 차원 ADRC의 차수가 낮아서, 축소 차원 ADRC의 대역폭을 기존 ADRC의 대역폭보다 크게 설정할 수 있다. 그리고, 증가한 이득과 실질적인 구현을 고려하여, 이산 시간 영역에서 설계하였다. 제안된 알고리즘의 안정도를 확보하고, 성능을 높이기 위하여, 추정하는 제정수의 값을 실제 값보다 작게 설정하였다. 제안한 방법은 기계시스템의 공진에 의한 영향을 감쇄시킬 수 있다. 제안한 방법을 검증하기 위해, 시뮬레이션과 실험을 수행하였다.

  • PDF

Model Validation and Controller Design for Vibration Suppression of Flexible Rotor Using AMB

  • Soo Jeon;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1583-1593
    • /
    • 2002
  • This paper discusses the model validation and vibration suppression of an AMB flexible rotor via additional LQG controller. The main difficulty in the vibration suppression of the flexible rotor using AMB is to realize a controller that can minimize resonance without injuring the stabilized rigid modes. In order to solve this problem, simple scheme for system modeling and controller design are developed. Firstly, the AMB flexible rotor is stabilized with a PID controller, which leads to a new stable rotor-bearing system. Then, authors propose the model validation procedure using measured open-loop frequency responses to obtain an accurate model of the AMB flexible rotor system. After that, LQG controller with modal weighting is designed to suppress resonances of the stable rotor-bearing system. Due to the poor controllability and observability of flexible modes compared to rigid ones, balancing of two Gramians is prerequisite for the fair LQG controller design. Simulation with step disturbance and experimental results of unbalance response up to 10,000 rpm verified the effectiveness of the proposed scheme.

DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise

  • Li, Shengquan;Zhao, Rong;Li, Juan;Mo, Yueping;Sun, Zhenyu
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents a composite control strategy for the active suppression of vibration due to the unknown disturbances, such as external excitation, harmonic effects and control spillover, as well as high-frequency accelerometer measurement noise in the all-clamped stiffened plate. The proposed composite control action based on the modal approach, consists of two contributions including feedback part and feedforward part. The feedback part is the well-known PID controller, which is widely used to increase the structure damping and improve its dynamic performance close to the resonance frequencies. In order to get better performance for vibration suppression, the weight matrixes is optimized by chaos sequence. Then an improved disturbance observer (IDOB) as the feedforward compensation part is developed to enhance the vibration suppression performance of PID under various disturbances and uncertainties. The proposed IDOB can simultaneously estimate the various disturbances dynamically as well as measurement noise acting on the system and suppress them by feedforward compensation design. A rigorous analysis is also given to show why the IDOB can effectively suppress the unknown disturbances and measurement noise. In order to verify the proposed composite control algorithm (IDOB-PID), the dSPACE real-time simulation platform is used and an experimental platform for the all-clamped stiffened plate active vibration control system is set up. The experimental results demonstrate the effectiveness, practicality and strong anti-disturbances ability of the proposed control strategy.

Virtual Inertia Control of D-PMSG Based on the Principle of Active Disturbance Rejection Control

  • Shi, Qiaoming;Wang, Gang;Fu, Lijun;Liu, Yang;Wu, You;Xu, Li
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1969-1982
    • /
    • 2015
  • The virtual inertia control (VIC) of wind turbine with directly-driven permanent-magnet synchronous generator (D-PMSG) can act similarly to the conventional synchronous generator in inertia response and frequency control, thereby supporting the system frequency stability. However, because the wind speed is inconstant and changeable to a certain extent and the D-PMSG is a complex nonlinear system, there are great difficulties in the virtual inertia optimal control of the D-PMSG. Based on the design principle of the active disturbance rejection control (ADRC), this paper presents a new VIC strategy for the D-PMSG from the perspective of power disturbance suppression in the system. The strategy helps fulfill the power grid disturbance estimation and compensation by means of the extended state observer (ESO) so as to improve the disturbance-resisting performance of the system. Compared with conventional proportional-derivative virtual inertia control (PDVIC), this method, which is of better adaptability and robustness, can not only improve the property of the D-PMSG responding to the system frequency but also reduce the influence of wind speed disturbance. The simulation and experiment results have verified the effectiveness and feasibility of the VIC based on the ADRC.

Optimal Design of a Smart Actuator by using of GA for the Control of a Flexible Structure Experiencing White Noise Disturbance

  • Han, Jungyoup;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.125-129
    • /
    • 1996
  • This paper deals with the problem of placement/sizing of distributed piezo actuators to achieve the control objective of vibration suppression. Using the mean square response as a performance index in optimization, we obtain optimal placement and sizing of the actuator. The use of genetic algorithms as a technique for solving optimization problems of placement and sizing is explored. Genetic algorithms are also used for the control strategy. The analysis of the system and response moment equations are carried out by using the Fokker-Planck equation. This paper presents the design and analysis of an active controller and optimal placement/sizing of distributed piezo actuators based on genetic algorithms for a flexible structure under random disturbance, shows numerical example and the result.

  • PDF

The Forced Vibration Control of a Flexible Beam using PZT Actuator (PZT 액튜에이터를 이용한 유연한 보의 강제 진동제어)

  • 윤여흥;임숙정;권대규;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.275-278
    • /
    • 2001
  • Research on the forced vibration control of a flexible GFR composite beam using $\mu$-synthesis is performed on this paper. Modal analysis method and modal coordinates are introduced to obtain the state equations of the structural system. Using these equations, Robust control algorithm using $\mu$-synthesis is adopted to suppress the forced vibration of a flexible beam since the designed controller can considered plant uncertainty and external disturbance. Constant disturbance which is generated by shaking the flexible beam as I's natural frequency is effectively rejected by a PZT actuator. Simulations and experiments are carried out with the designed controller and effectiveness of forced vibration suppression strategy is verified by results.

  • PDF

Studdy for Force Ripple Suppression of the Iron Core Linear Motors (철심형 리니어모터의 추력 리플 억제에 관한 연구)

  • 송창규;김정식;김경호;박천홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.358-362
    • /
    • 2004
  • Higher productivity requires high-speed motion of machine tool axes. The iron core linear DC motor (LDM) is widely accepted as a viable candidate for high-speed machine tool feed unit. LDM, however, has two inherent disturbance force components, namely cogging and thrust force ripple. These disturbance forces directly affect the tracking accuracy of the feeding system and must be eliminated or reduced. In order to reduce motor ripple, this research adapted the feedforward compensation method and neural network control. Experiments carried out with the linear motor test setup show that these control methods are effective in reducing motor ripple.

  • PDF