• Title/Summary/Keyword: Disturbance input

Search Result 472, Processing Time 0.033 seconds

Improvement of response in model reference adaptive control system using sliding-mode control method (Sliding-mode 기법에 의한 모델기준 적응제어계의 응답특성 개선)

  • Choi, Bu-Gui;Lee, Hyoung-Ki;Kwon, Se-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.76-79
    • /
    • 1988
  • The sliding mode control in an effective method to eatablish robustness against parameter variation and disturbance. But. In sliding mode strategy, the control function is discontinuous on the hyperplane. However the discontinuous change in control structure caves the controller input to chaffer and gives non-zero steady state error. Consequently, a multiloop feedback control system supplemented by a complelmentary controller is used to improved the drive performence of a DC servo motor and reduce sensitivity to parameter variation, nonlinear effects, and other disturbances.

  • PDF

Optimal Sliding-Mode Controller Design based on State Observer (관측기 기반 하의 최적 슬라이딩 모드 제어기 설계)

  • Hong, Min-Suk;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.119-121
    • /
    • 2005
  • The sliding-mode control technique could make a system unstable which external disturbance and uncertainty exists in. This paper suggests a robust sliding-mode control algorithm which can be applied to a linear system with parameter uncertainties. To reduce the chattering effect, the whole system is comprised of using a state variable in which the state's estimated value is added. The condition of estimated state results from state observer. The proposed control algorithm uses the optimal feedback controller following the dynamic system equation which consists of a state variable resulting from its own state variable, controller input, estimated state variable. Through comparison with the time optimal control algorithm using simulation, the suggested algorithm shows the improved stability and robustness while it manifests the fast tracking characteristics.

  • PDF

A Unifying Design of $H_\infty$ Controller with PI Xpeed Feedback for High Precision Position Control of Flexible System

  • Chun, Yeonghan;Hori, Yoichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.553-557
    • /
    • 1994
  • We propose a design method that uses H$_{\infty}$ optimization method to suppress oscillation of a shaft between motor and load for high precision (0.001 % of reference input) position controls. PI speed control loop was introduced as a minor loop. Standard problem is used for the modeling of the system and Glover-Doyle's algorithm is used for the optimization in the H$_{\infty}$ space. Friction is considered to be an important factor that makes it difficult for the system to reach steady state in short time. In this paper, we propose a hybrid controller that includes PI speed feedback loop, which is expected to have a role to reject torque disturbance like friction.n.n.

  • PDF

A design on model following control system of DC servo motor using GMDH algorithm (GMDH 알고리즘에 의한 직류 서보 전동기의 모델추종형 제어계 구성에 관한 연구)

  • 황창선;김문수;이양우;김동완
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1044-1047
    • /
    • 1996
  • In this paper, GMDH(Group Method of Data Handling) algorithm, which is based on heuristic self organization to predict and identify the complex system, is applied to the control system of DC servo motor. The mathematical relation between input voltage and motor speed is obtained by GMDH algorithm. A design method of model following control system based on GMDH algorithm is developed. As a result of applying this method to DC servo motor, the simulation and experiment have shown that the developed method gives a good performance in tracking the reference model and in rejection of disturbance, in spite of constant load and changing load.

  • PDF

A PID learning controller for DC motors (DC 전동기를 위한 PID 학습제어기)

  • 백승민;이동훈;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.347-350
    • /
    • 1996
  • With only the classical PID controller applied to control of a DC motor, a good (target) performance characteristic of the controller can be obtained, if all the model parameters of DC motor and operating conditions such as external load torque, disturbance, etc. are exactly known. However, in case when some of system parameters or operating conditions are uncertain or unknown, the fixed PID controller does not guarantee the good performance which is assumed with precisely known system parameters and operating conditions. In view of this and robustness enhancement of DC motor control system, we propose a PID learning controller which consists of a set of learning rules for PID gain tuning and learning of an auxiliary input. The proposed PID learning controller is shown to drive the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation results are given to demonstrate the effectiveness of the proposed PID learning controller, thereby showing whose superiority to the conventional fixed PID controller.

  • PDF

Optimal Switching Parameter Control of Semi-Active Engine Mount

  • Truong, Thanh Quoc;Ahn, Young-Kong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1-4
    • /
    • 2005
  • This paper describes work on isolation of vibration related engine by a hydraulic engine mount with controllable area of inertia track. Automotive engine mounts are required to constrain motion of engine shake resulting from low-frequency road input of shock excitation and also to isolate noise and vibration generated by the engine with unbalanced disturbance at the high frequency range. The property of the mount depends on vibration amplitude and excitation frequency, which means that the excitation amplitude is large in low excitation frequency range and small in high frequency range. In this paper, theoretical works with model of the mount to reduce vibrations related engine were conducted. The volumetric stiffness of the mount is greatly changed according to the switching the area of the inertia track. Therefore, when the area of the inertia track is tuned, the transmissibility of the mount is effectively reduced.

  • PDF

A Levitation Controller Design for a Magnetic Levitation System (자기부상 시스템의 부상제어기 설계)

  • 김종문;강도현;박민국;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.342-350
    • /
    • 2003
  • In this paper, a levitation controller for a magnetic levitation(MagLev) system is designed and implemented. The target to be controlled is PEM(permanent and electromagnet) type with 4-corners levitation which is open-loop unstable, highly non-linear and time-varying system. The digital control system consists of a VME-based CPU board, AD board, PU board, 4-Quadrant chopper, and gap sensor, accelerometer as feedback sensors. In order to estimate the velocity of the magnet, we used 2nd-order state observer with acceleration and gap signal as input and output, respectively. Using the estimated states, a state feedback control law for the plant is designed and the feedback gains are selected by using the pole-placement method. The designed controller is experimentally validated by step-type gap reference change and force disturbance test.

Design of Continuous Variable Structure Tracking Controller With Prescribed Performance for Brushless Direct Drive Drive Servo Motor

  • Lee, Jung-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 1998
  • A continuous, accurate, and robust variable structure tracking controller(CVSTC) is designed for brushless direct drive servo motors(BLDDSM). Although conventional variable structure controls can give the desired tracking performances, there exists an inevitable chattering problems in control input which is undesirable for direct drive systems. With the presented algorithm, not only the chattering problems are removed by using the efficient compensation of the disturbance observer, but also the prescribed tracking trajectory can be obtained using the sliding dynamics when an initial of the desired trajcetory is different from that of a BLDDSM. The design of the sliding mode tracking controller for the prescribed, accurate, and robust tracking performance without the chattering problem is given based on the results of the detailed stability analysis. The usefulness of the suggested algorithm is demonstrated through the computer simulation for a BLDDSM under load variations.

  • PDF

A Fault Detection of Transmission Line using ANFIS (적응 뉴로퍼지 추론시스템(ANFIS)을 이용한 송전선로에서의 고장검출)

  • Kim, Hee-Soo;Ryu, Chang-Wan;Hong, Dae-Sung;Yim, Hwa-Yeoung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1082-1084
    • /
    • 1999
  • A fault detection of power system must be fast and correctly over input signal without relation to any disturbance. But, it is difficult to detect fault state for digital relay comparison of fault perfectly. In this Paper, we measure each Phase current and infer type of fault using ANFIS(Adaptive Neuro-Fuzzy Inference System).

  • PDF

An Expert System to Perform Controller Tuning Using Fuzzy Logic (애매 논리를 이용한 제어기 동조를 위한 전문가 시스템)

  • Jeon, Jeong-Yeol;Kim, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.255-257
    • /
    • 1992
  • The expert system described in this article tunes a proportional-integral-derivative(PID) controller for a single-input single-ouput process. The expert system examines features of each transient response and the corresponding controller parameters. It determines a new set of controller gains to obtain a more desirable time reponse using fuzzy logic. This technique can be used to determine and implement a different set of PID gains for each operating regime and, once in steady state, the system can be used to find optimal parameters for load disturbance rejection.

  • PDF