• Title/Summary/Keyword: Disturbance input

Search Result 472, Processing Time 0.032 seconds

Anti-sway Control for Crane System Using Two Degree of Freedom Servo Controller (2자유도 서보제어기를 이용한 크레인의 Anti-sway 제어)

  • 이진우;여태경;김환성;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.555-558
    • /
    • 1995
  • In designing the anti-sway controller for crane system in the industrial field, one of the basic problem is to keep the stability of system, even if the mathematical model of the plant is not exact and disturbance exists. Form this point of view, a two-degree-of-freedom(2DOF) servo controller effact to the system in which the integral compensation is effctive only when a modeling error and/or a disturbance input exist. In this paper, the change of load weight and variation of wire rope length considered as the structured uncertainty, and design the 2DOF servo contorller using independently the informations of reference signal and control output with both feedforward and feedback. The effectivenss is proved through the results for the anti-sway system in the system with the position control of trolley.

  • PDF

A high speed electro-hydraulic no leakage servo valve using multilayered piezoelectric devices (PZT) and an observer

  • Yokota, Shinichi;Park, Jung-Ho;Fuwa, Akihiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.54-59
    • /
    • 1994
  • In this study, a high-speed servo valve with no outer leakage is developed, which is used to drive flexible hydraulic actuators (FHA) for extreme environments. In the valve, multilayered PZT devices are used to drive a spool directly and quickly. A bellows is also used to prevent outer leak from the clearance between the spool and the sleeve. Employing a disturbance observer, the lack of the system damping of the valve is improved by feeding back the estimated velocity of the spool, as well as the estimated disturbance is fed back to eliminate effectively the hysteresis between input voltage and output displacement of the PZT devices.

  • PDF

Robust and Non-fragile $H_{\infty}$ Control for Descriptor Systems with Parameter Uncertainties and Time Delay

  • Kim, Jong-Hae;Oh, Do-Chang
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • This paper describes a robust and non-fragile $H_{\infty}$ controller design method for descriptor systems with parameter uncertainties and time delay, as well as a static state feedback controller with multiplicative uncertainty. The controller existence condition, as well as its design method, and the measure of non-fragility in the controller are proposed using linear matrix inequality(LMI) technique, which can be solved efficiently by convex optimization. Therefore, the presented robust and non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop systems within a prescribed degree in spite of parameter uncertainties, time delay, disturbance input and controller fragility.

Web Lateral Control of Cold Rolling Mill Systems Using a Robust PID Control (강인 PID 제어를 이용한 냉간압연 시스템의 웹 횡방향 제어)

  • Park, Chintac;Kim, In-Soo;Lee, Young-Jin;Kim, Jong-Shik;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.373-384
    • /
    • 2002
  • This paper presents a robust PID controller design technique using the concept of model matching method in the frequency domain. To design the robust PID controller satisfying disturbance attenuation and robust tracking property for a reference input, first an H$\infty$ controller satisfying given performance is designed using the H$\infty$ control method. And then, the parameters(proportional, integral, and derivative gains) of the robust PID controller are determined using the model matching at frequency domain. The proposed technique is applied to a position controller design of the web. The simulation results show that the proposed robust PID controller satisfies disturbance attenuation and tracking property.

A study on the robustness and optimality of a LQ computer control for a manipulator with flexible joints (유연관절을 갖고 있는 로보트를 위한 LQ 컴퓨터 제어의 강인성과 최적성에 관한 연구)

  • 김진화;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.149-154
    • /
    • 1990
  • In this paper, simulation results of a robust digital tracking controller on a robotic manipulator are presented. The objective is to follow a ramp reference input with zero steady state error in the presence of a disturbance and system parameter variations. Some of the difficulties are caused by the Coulomb frictions, the disturbance due to the gravitational pull, the spring effect of a link between the drive motor and the manipulator arm. Another difficulty is that, because of the non-differentiable Coulomb friction, the digital control system cannot be represented as a discrete system. It is thus necessary to design the controller based on a discrete-continuous hybrid model. The controller is based on feeding back the state variables and augmenting the system by addition discrete integrators. The feedback gain parameters are obtained by applying the quadratic optimal control theory and then choosing the new weighting matrices to eliminate the limit cycle by using the describing function method for hybrid system.

  • PDF

Structural Analysis and Design of Robust Motion Controllers for High-Accuracy Positioning Systems

  • Kim, Bong-Keun;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.467-467
    • /
    • 2000
  • In this paper, a structural design method of robust motion controllers for high-accuracy positioning systems, which makes it possible to predict the performance of the whole closed-loop system, is proposed. First, a stabilizing control input is designed based on robust internal-loop compensate.(RTC) for the system in the presence of uncertainty and disturbance. Next, using the structural characteristics of the RIC, disturbance attenuation properties and the performance of the closed-loop system determined by the variation of controller gains are analyzed. Through this analysis, in some specific applications, it is shown that if the control gain of RIC is increased by N times, the magnitude of error is reduced to its 1/N. Finally, the proposed method is verified through experiments using a high-accuracy positioning system used in the semiconductor chip mounting devices.

  • PDF

Structural Design of Sliding Mode Controllers Using Robust Inernal-Loop Compensator (강인 내부루프 보상기를 이용한 슬라이딩 모드 제어기의 구조적 설계)

  • Kim, Bong-Keun;Chung, Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.351-361
    • /
    • 2001
  • In this paper, a generalized framework called as robust internal-loop compensator(RIC) is presented, and by using this, a structural design method of sliding of sliding mode controller is proposed. First, a general sliding mode controller is derived and a stabilizing control input is designed based on Lyapunov redesign for the system in the presence of uncertainty and disturbance. And adopting the internal model following control, RIC is proposed. Next, using the structural characteristics of the proposed RIC, disturbance attenuation characteristics are analyzed and the performance of the closed-loop system is predicted. Through this analysis, it is shown that if the control gain of RIC is increased by N times, the magnitude of error is reduced to its 1/N. the proposed method is verified through experiments using a high-precision positioning system and the performance is evaluated.

  • PDF

RHC based Looper Control for Hot Strip Mill (RHC를 기반으로 하는 열간압연 루퍼 제어)

  • Park, Cheol-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.295-300
    • /
    • 2008
  • In this paper, a new looper controller is proposed to minimize the tension variation of a strip in the hot strip finishing mill. The proposed control technology is based on a receding horizon control (RHC) to satisfy the constraints on the control input/state variables. The finite terminal weighting matrix is used instead of the terminal equality constraint. The closed loop stability of the RHC for the looper system is analyzed to guarantee the monotonicity of the optimal cost. Furthermore, the RHC is combined with a 4SID(Subspace-based State Space System Identification) model identifier to improve the robustness for the parameter variation and the disturbance of an actuator. As a result, it is shown through a computer simulation that the proposed control scheme satisfies the given constraints on the control inputs and states: roll speed, looper current, unit tension, and looper angle. The control scheme also diminishes the tension variation for the parameter variation and the disturbance as well.

An Integrated Model of SPC and EPC with Second-order Autoregressed Disturbance for the Process with Trend (추세가 있는 공정에서 이계자기회귀 각란 모형을 고려한 EPC와 SPC의 통합시스템)

  • 김종걸;정해운
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.05a
    • /
    • pp.81-89
    • /
    • 2002
  • EPC seeks to minimize variability by transferring the output variable to a related process input(controllable) variable, while SPC seeks to reduce variability by detecting and eliminating assignable causes of variation. In the case of product control, a very reasonable objective is to try to minimize the variance of the output deviations from the target or set point. We consider an alternative EPC model with second-order autoregressive disturbance. We compare three control systems; EPC, EPC combined with EWMA, and Shewhart. This paper shows through simulation that the performance of the integrated model of EPC and SPC is more preferable than that of EPC.

  • PDF

A Study on Anti-Sway of Crane using Neural Network Predictive PID Controller (Anti-Sway에 관한 연구)

  • 손동섭;이진우;민정탁;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.219-227
    • /
    • 2002
  • In this paper, we designed neural network predictive PID controller to control sway happened in transfer of trolley for automatic travel control system. We include dynamic character of nonlinear system, and mathematical expression veny simple used neural network. When various establishment location and surrounding disturbance were approved based on mathematical modelling of crane, controller designed to become effective control location error and vibration angle of two control variables that simultaneously can predictive control. Neural network predictive PID controller produced parameter of PID controller using neural network self-tuner. Neural network self-tuner's input used crane's output and neural network predictive output. Neural network self-tuner using error back propagation algorithm. We analyzed control performance comparison through computer simulation when applied disturbance about sway of location and angle in transfer of crane. The results show that the proposed neural network predictive PID controller has better performances than general PID controller, neural network PID controller.

  • PDF