• Title/Summary/Keyword: Disturbance Torque

Search Result 283, Processing Time 0.029 seconds

PRECISION IDENTIFICATION OF ACTUATOR DISTURBANCE PARAMETER BY FREQUENCY COMPENSATION (주파수 보정법에 의한 구동기 외란 파라미터 정밀 결정)

  • Lee Hyunho;Cheon Dong-Ik;Oh Hwa-Suk
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.138-142
    • /
    • 2005
  • A reaction wheel, an actuator for satellite attitude control, produces disturbance torque and force as well as its axial control torque. The disturbances have an influence on the pointing stability of high precision satellites. The measurement of disturbances for such a satellite, therefore, is necessary. The wheel's rotation, however, causes the vibration of the table and its vibration induces measurement errors, especially large near the resonance frequency of the Measurement table. For the purpose of overcoming these defects, a calibration method using frequency compensation is suggested in this paper. Disturbance parameters are identified from data examined by frequency compensation. Measurement frequency range can be expanded far higher than the resonance frequency, since the degradation of data accuracy caused by its vibration is well alleviated even in the resonance area.

  • PDF

An Improved Predictive Functional Control with Minimum-Order Observer for Speed Control of Permanent Magnet Synchronous Motor

  • Wang, Shuang;Fu, Junyong;Yang, Ying;Shi, Jian
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.272-283
    • /
    • 2017
  • In this paper, an improved predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) control system is proposed, on account of the standard PFC method cannot provides a satisfying disturbance rejection performance in the case of strong disturbances. The PFC-based method is first introduced in the control design of speed loop, since the good tracking and robustness properties of the PFC heavily depend on the accuracy of the internal model of the plant. However, in orthodox design of prediction model based control method, disturbances are not considered in the prediction model as well as the control design. A minimum-order observer (MOO) is introduced to estimate the disturbances, which structure is simple and can be realized at a low computational load. This paper adopted the MOO to observe the load torque, and the observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC strategy with torque compensation, called the PFC+MOO method, is presented. The validity of the proposed method was tested via simulation and experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

A Study on the Speed Control of BLDC Motor Using the Feedforward Compensation (전향보상을 이용한 BLDC 모터의 속도제어에 관한 연구)

  • Park K.H.;Kim T.S.;Kim K.H.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.663-666
    • /
    • 2003
  • This paper presents a speed controller method based on the disturbance torque observer of high performance brushless DC (BLDC) motor drives. In case of the speed control of robot arms and tracking applications with lower stiffness, we cannot design the speed controller gain to be very large from tile viewpoint of the system stability. Thus, the feedforward compensator using disturbance torque observer was proposed. This method can improve the speed characteristic without increasing the speed controller gain. The enhanced speed control performance can be achieved and the speed response against the disturbance torque can be Improved for high-performance BLDC motor drive systems in which the bandwidth of tile speed controller cannot be made large enough. Consequently, speed control for high-performance BLDC motor drives become improved. The simulation results for BLDC motor drive systems confirm the validity of the proposed method.

  • PDF

The development of generating reference trajectory algorithm for robot manipulator (로봇 제어를 위한 변형 기준 경로 발생 알고리즘의 개발)

  • 민경원;이종수;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.912-915
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researches to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used the concept of sliding mode theory and fuzzy system to reduce chattering in control input. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In this simulation, proposed method showed better trajectory tracking performance compared with the CTM.

  • PDF

Speed Control of Two-Mass System Using Neural Network Estimator (신경망 추정기를 이용한 2관성 공진계의 속도 제어)

  • Lee, Kyo-Beum;Song, Joong-Ho;Choi, Ick;Kim, Kwang-Bae;Lee, Kwang-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.286-293
    • /
    • 1999
  • A new control scheme using a torsional torque estimator based on a neural network is proposed and investigated for improving control characteristics of the high-performance motion control system. This control method presents better performance in the corresponding speed vibration response, compared with the disturbance observer-based control method. This result comes from the fact that the proposed neural network estimator keeps the self-learning capability, whereas the disturbance observer-based torque estimator with low pass filter should dbjust the time constant of the adopted filter according to the natural resonance frequency detemined by considering the system parameters varied. The simulation results shows the validity of the proposed control scheme.

  • PDF

Torque Disturbance Analysis of Missile Hatch System by Spline Backlash (스플라인 백래시에 의한 유도탄 해치시스템의 토크 외란 분석)

  • Byun, Young Chul;Kang, E Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.89-99
    • /
    • 2014
  • This paper presents the experimental torque disturbance analysis of a missile hatch system by spline backlash. The missile hatch system uses a spline and gear train for vertical elevation of the heavy hatch. The spline used for the rotation shaft of the hatch is generally used for automotive driving parts that transmit high amounts of power. It has an angular backlash, which results in jerks. Backlash of the hatch spline influences hatch swinging. The spline backlash and hatch swing are experimentally analyzed by measuring the hatch's rotation angle and acceleration. Hatch swing is visually observable for a short period, and it is measured by measuring the rotation angle variation and hatch acceleration. The shape of fluctuation and duration time of hatch angle variation are similar to those of torque. This shows that the hatch swing due to spline backlash generates torque disturbances.

Partial state feedback $H_{\infty}$ control of the two-mass resonant system having IM (2관성 공진계를 갖는 유도 전동기의 부분적인 상태 보상을 이용한 $H_{\infty}$ 제어)

  • 강석진;김진수;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.58-62
    • /
    • 1998
  • In the industrial motor drive systems, a torsional vibration is often generated because of the elastic elements in torque transmission. One of general methods for the system is H$\infty$ controller to suppress the torsional vibration and reject the torque disturbance. vibration and reject the torque disturbance. Moreover, the two-degrees-of-freedom controller, which includes the H$\infty$ controller, is designed in order to improve the command following property. In this paper, we propose a new H$\infty$ controller with partial state feedback. This method having simple structure satisfies with the fast command following property and the attenuation of disturbances and vibrations simultaneously, just like the complicated TDOF H$\infty$ controller

  • PDF

Online Compensation of Parameter Variation Effects for Robust Interior PM Synchronous Motor Drives

  • Shrestha, Rajendra L.;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.713-718
    • /
    • 2011
  • This paper presents an online voltage disturbance estimator to achieve precise torque control of IPMSMs over a high speed operating region. The proposed design has a type of state-filter based on a Luenburger-style closed loop stator current vector observer. Utilizing the frequency response plot (FRF) approach, the estimation accuracy and the parameter sensitivities are analyzed. Accurate torque control and improved efficiency are provided with the decoupling of the effect of the parameter variations. The feasibility of the presented idea is verified by laboratory experiments.

The Design of Adaptive Fuzzy Controller for Vibration Suppression

  • Kim, Seung-Cheol;Sul, Jae-Hoon;Park, Jae-Hyung;Lim, Young-Do;Park, Book-Kwi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.2-41
    • /
    • 2001
  • A torque transmission system, which is composed of several gears and couplings, is flexible. Therefore, the torsion vibration occurs when the motor speed abruptly changes. Consequently, for Accuracy characteristic response of motor, we must suppressed vibration. Therefore, vibration suppression is very important motor control. To vibration suppression, various control method have been proposed. Specially, one method of vibration suppression used disturbance observer filter. This method is torsion torque passing disturbance observer filter. By feedback of the estimated torsion torque, the vibration can be suppressed The coefficient diagram method is used to design the filter and proportional controller.

  • PDF

Robust Time Delay Compensation for DTC-Based Induction Machine Systems via Extended State Observers

  • Wang, Fengxiang;Wang, Junxiao;Yu, Li
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.736-745
    • /
    • 2018
  • This paper presents an extended state observer (ESO) based direct torque control (DTC) for use in induction motor systems to handle the issues of time delays, load torque disturbances and parameter uncertainties. Direct torque control offers an excellent torque response and it does not require a proportion integration (PI) controller in the current loop. However, a PI controller is still adopted in the outer speed loop to generate the torque reference value, which is a slow method. An ESO based compound control scheme is proposed to improve the response rate and accuracy of the torque reference signal, especially when load torque is injected. In addition, the time delay problem is analyzed and compensated for in this paper to reduce torque ripples. The proposed disturbance compensation technique based direct control scheme is shown to have good performance both in the transient and stable states via simulations and experimental results.