• 제목/요약/키워드: Disturbance Torque

검색결과 283건 처리시간 0.032초

외란 관측기와 PID제어기를 이용한 2축 주행시스템의 동기제어 (Synchronous Control of a Two-Axes Driving System by Disturbance Observer and PID Controller)

  • 변정환;김영복;양주호
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.67-72
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers, disturbance observers, and one synchronous controller. The speed controllers, based on the PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order for the speed response fo the second axis to correspond with the one of the first axis. The disturbance observer has been designed to restrain the torque disturbance. The synchronous controller eliminates the synchronous error by controlling the speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어 (Precision Speed Control of PMSM Using Neural Network Disturbance Observer and Parameter Compensator)

  • 고종선;이용재
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권10호
    • /
    • pp.573-580
    • /
    • 2002
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

Low-frequency Vibration Suppression Control in a Two-mass System by Using a Torque Feed-forward and Disturbance Torque Observer

  • Li, Qiong;Xu, Qiang;Wu, Ren
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.249-258
    • /
    • 2016
  • Given that elastic connection is often used between motor drives and load devices in industrial applications, vibration often occurs at the load side. Vibration suppression is a crucial problem that needs to be addressed to achieve a high-performance servo-control system. Scholars have presented many strategies to suppress vibration. In this study, we propose a method to diminish vibration by using a torque feed-forward and disturbance torque observer. We analyze the system performance and explain the principle of the proposed vibration suppression method based on the transfer functions of the system. The design of controller parameters is another important issue in practical applications. We accordingly provide a succinct outline of the design specifications based on the coefficient diagram method. Furthermore, we build a model under the Simulink environment and conduct experiments to validate the proposed method. Results show that speed and position vibrations are successfully suppressed by the proposed method.

외란 관측기를 이용한 직접 구동형 로봇의 고속.고정도 제어 (High speed and accurate positioning control of robot manipulator by using disturbance observer)

  • 서일홍;엄광식;권기호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.948-951
    • /
    • 1996
  • High-speed/high-accuracy control of robot manipulator becomes more and more stringent because of the external disturbance and nonlinear characteristics. To meet this ends, lots of control strategies were proposed in the past such as the computed torque control, the nonlinear decoupled feedback control, and adaptive control. These control methods need computations of the inverse dynamics and require much computational effort. Recently, a disturbance observer with unmodeled robot dynamics and simple algorithms to motion control have been widely studied. This paper proposes a motor control strategy based on the disturbance observer which estimate the disturbance of each joint from input-output relationship of the actuator and eliminate the estimated disturbance including the torque due to modeling errors, coupling force, nonlinear friction, and so on. To apply the disturbance observer to closedloop system like velocity servo pack, the modified control structure was constructed and shown that it is equivalent to a disturbance observer in open-loop system. Finally, using the proposed approach, simulation and experiments were carried out for a two-degree-of-freedom SCARA type direct drive robot, and show some results to verify the effectiveness of the proposed algorithms.

  • PDF

High TPI HDD 구현을 위한 PES Estimation에 관한 연구 (A Study on the PES Estimation for Developing High-TPI HDD)

  • J. S. Koh;S. W. Kang;Y. S. Han;Kim, Y. H.;T. Y. Hwang
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.319.1-319
    • /
    • 2002
  • A frequency-domain PES estimation and its prediction method are proposed for the tightly-coupled servo/mechanical design of high-TPI HDD system above 100kTPI. The major two disturbance energies which are related with mechanical vibrations inside of HDD are used to predict the drive-level PES, while considering closed-loop servo dynamics. One is the torque disturbance which mainly comes from aerodynamic excitation of HSA system and the other is the displacement disturbance from disk-spindle dynamics. (omitted)

  • PDF

부하토오크 관측기를 이용한 영구자석 동기전동기의 강인성 속도 제어 (Robust Speed Control of Vector Controlled PMSM with Load Torque Observer)

  • 윤병도;김윤호;김원오;윤명균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.559-563
    • /
    • 1991
  • Permanent magnet synchronous motor (PMSM) is receiving increased attention for servo drive applications in recent years because of its high torque to inertia ratio, superior power density and high efficiency. Vector-controlled PMSM has the same operating characteristics as separately excited dc motor. The drive system of servo motor is requested to have an accurate response for the speed reference and a quick recovery for the disturbance such as load torque. However the dynamics of PMSM drive change greately by parameter variations. Morever, when the unkown and inaccessible disturbances are imposed on PMSM, the drive system is given a significant effect by them. As a result, the drive system with both a fast drive performance and a reduced sensitivity to parameter variations is requested. In this paper, the robust control system of PMSM with torque feedforward using load torque observer is presented. In the proposed system, load torque is estimated by the reduced order observer, and the robust control system against load torque variation is realized using the torque feedforward. Moreover, the design of speed controller with the torque observer is discussed. Simulation results show that the proposed method is effective for suppression of parameter variations and load disturbance.

  • PDF

열간압연 권취형상 제어를 위한 LSDC 설계에 관한 연구 (Study on LSDC Design for Coiling Shape Control of Hot Strip Mills)

  • 이상호;박홍배;박철재
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.869-874
    • /
    • 2015
  • We developed an LSDC (Load Shift and Load Distribution Control) technology in order to improve coil quality and productivity by reducing tension fluctuation especially for the tail of the strip in the down coiler in hot strip mills. To adapt the new controller, the torque and speed distribution between the zero pinch roll, pinch roll, and mandrel are needed. The proposed controller is a combination of an LSC to share the tension between the mill stand and the mandrel, and an LDC to shift the torque load from the zero pinch roll to the pinch roll. From the simulation, the proposed controller is verified under the torque disturbance. Using a field test, the torque deviation decreased by nearly 50% through utilization of the LSDC control.

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 속도제어 (Precision Speed Control of PMSM Using Neural Network Disturbance observer and Parameter compensation)

  • 고종선;이용재;김규겸
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.389-392
    • /
    • 2001
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

영구자석형 동기전동기의 저속도 영역에서 제어 성능 개선 (Improvement of Control Performance of PMSM in the low Speed Range)

  • 원충연;유재성;전범수;황선모;김연층;이상석
    • 조명전기설비학회논문지
    • /
    • 제19권1호
    • /
    • pp.70-79
    • /
    • 2005
  • 본 논문은 축소차원 상태방정식을 사용한 전차원 관측기를 이용하여 저속도 영역에서의 운전 성능 개선방법을 제안하였다. 축소차원 상태방정식을 사용한 전차원 관측기는 간단한 모터속도 및 외란토크 관측기이다. 제안한 알고리즘은 약 1.9[rpm]의 저속도에서 매우 안정적인 결과를 보였다. 모터구동 시스템에서 외란토크는 저속도 영역에서 속도제어 성능을 저하시킨다. 제안한 알고리즘은 모터속도와 외란토크를 모두 추정한다. 추정된 외란 토크는 속도제어기의 출력에 전향보상 값으로 사용되며, 그 결과 저속도 영역(1.9rpm)에서 부하토크 응답특성이 향상된 것을 확인하였다.

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어 (Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator)

  • 고종선;진달복;이태훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.